Advertisement

Dual System Encryption Framework in Prime-Order Groups via Computational Pair Encodings

  • Nuttapong AttrapadungEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10032)

Abstract

We propose a new generic framework for achieving fully secure attribute based encryption (ABE) in prime-order bilinear groups. Previous generic frameworks by Wee (TCC’14) and Attrapadung (Eurocrypt’14) were given in composite-order bilinear groups. Both provide abstractions of dual-system encryption techniques introduced by Waters (Crypto’09). Our framework can be considered as a prime-order version of Attrapadung’s framework and works in a similar manner: it relies on a main component called pair encodings, and it generically compiles any secure pair encoding scheme for a predicate in consideration to a fully secure ABE scheme for that predicate. One feature of our new compiler is that although the resulting ABE schemes will be newly defined in prime-order groups, we require essentially the same security notions of pair encodings as before. Beside the security of pair encodings, our framework assumes only the Matrix Diffie-Hellman assumption (Escala et al., Crypto’13), which includes the Decisional Linear assumption as a special case.

Recently and independently, prime-order frameworks are proposed also by Chen et al. (Eurocrypt’15), and Agrawal and Chase (TCC’16-A). The main difference is that their frameworks can deal only with information-theoretic encodings, while ours can also deal with computational ones, which admit wider applications. We demonstrate our applications by obtaining the first fully secure prime-order realizations of ABE for regular languages, ABE for monotone span programs with short-ciphertext, short-key, or completely unbounded property, and ABE for branching programs with short-ciphertext, short-key, or unbounded property.

Keywords

Attribute-based encryption Full security Prime-order groups 

References

  1. 1.
    Abe, M., Groth, J., Ohkubo, M., Tango, T.: Converting cryptographic schemes from symmetric to asymmetric bilinear groups. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 241–260. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44371-2_14 CrossRefGoogle Scholar
  2. 2.
    Agrawal, S., Chase, M.: A study of pair encodings: predicate encryption in prime order groups. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 259–288. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49099-0_10 CrossRefGoogle Scholar
  3. 3.
    Attrapadung, N.: Dual system encryption via doubly selective security: framework, fully secure functional encryption for regular languages, and more. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–577. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-55220-5_31. Full version available at Cryptology ePrint Archive: Report 2014/428CrossRefGoogle Scholar
  4. 4.
    Attrapadung, N.: Dual system encryption framework in prime-order groups via computational pair encodings. Full version of this paper. Cryptology ePrint Archive: Report 2015/390 (2015)Google Scholar
  5. 5.
    Attrapadung, N., Hanaoka, G., Matsumoto, T., Teruya, T., Yamada, S.: Attribute based encryption with direct efficiency tradeoff. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 249–266. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-39555-5_14 CrossRefGoogle Scholar
  6. 6.
    Attrapadung, N., Hanaoka, G., Ogawa, K., Ohtake, G., Watanabe, H., Yamada, S.: Attribute-based encryption for range attributes. In: Zikas, V., Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 42–61. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-44618-9_3 CrossRefGoogle Scholar
  7. 7.
    Attrapadung, N., Hanaoka, G., Yamada, S.: Conversions among several classes of predicate encryption and applications to ABE with various compactness tradeoffs. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 575–601. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48797-6_24 CrossRefGoogle Scholar
  8. 8.
    Attrapadung, N., Imai, H.: Dual-policy attribute based encryption. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 168–185. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-01957-9_11 CrossRefGoogle Scholar
  9. 9.
    Attrapadung, N., Libert, B., Panafieu, E.: Expressive key-policy attribute-based encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-19379-8_6 CrossRefGoogle Scholar
  10. 10.
    Attrapadung, N., Yamada, S.: Duality in ABE: converting attribute based encryption for dual predicate and dual policy via computational encodings. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 87–105. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-16715-2_5. Full version available at Cryptology ePrint Archive: Report 2015/157Google Scholar
  11. 11.
    Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-55220-5_30 CrossRefGoogle Scholar
  12. 12.
    Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-19571-6_16 CrossRefGoogle Scholar
  13. 13.
    Chase, M., Meiklejohn, S.: Déjà Q: using dual systems to revisit q-type assumptions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 622–639. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-55220-5_34 CrossRefGoogle Scholar
  14. 14.
    Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46803-6_20 Google Scholar
  15. 15.
    Chen, J., Wee, H.: Fully, (Almost) tightly secure ibe and dual system groups. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 435–460. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40084-1_25 CrossRefGoogle Scholar
  16. 16.
    Chen, J., Wee, H.: Semi-adaptive attribute-based encryption and improved delegation for boolean formula. In: Abdalla, M., Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 277–297. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-10879-7_16 Google Scholar
  17. 17.
    Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40084-1_8 CrossRefGoogle Scholar
  18. 18.
    Freeman, D.M.: Converting pairing-based cryptosystems from composite-order groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 44–61. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13190-5_3 CrossRefGoogle Scholar
  19. 19.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. In: STOC 2013 (2013)Google Scholar
  20. 20.
    Gorbunov, S., Vinayagamurthy, D.: Riding on asymmetry: efficient ABE for branching programs. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 550–574. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48797-6_23 CrossRefGoogle Scholar
  21. 21.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: ACM CCS 2006, pp. 89–98 (2006)Google Scholar
  22. 22.
    Guillevic, A.: Comparing the pairing efficiency over composite-order and prime-order elliptic curves. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 357–372. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38980-1_22 CrossRefGoogle Scholar
  23. 23.
    Hamburg, M.: Spatial Encryption. Cryptology. ePrint Archive: Report 2011/389Google Scholar
  24. 24.
    Herold, G., Hesse, J., Hofheinz, D., Ràfols, C., Rupp, A.: Polynomial spaces: a new framework for composite-to-prime-order transformations. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 261–279. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44371-2_15 CrossRefGoogle Scholar
  25. 25.
    Ishai, Y., Wee, H.: Partial garbling schemes and their applications. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 650–662. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-43948-7_54 Google Scholar
  26. 26.
    Karchmer, M., Wigderson, A.: On span programs. In: Structure in Complexity Theory Conference (1993)Google Scholar
  27. 27.
    Kowalczyk, L., Lewko, A.B.: Bilinear entropy expansion from the decisional linear assumption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 524–541. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48000-7_26. Report 2014/754 (retrieved version: Sep. 4, 2015)CrossRefGoogle Scholar
  28. 28.
    Lewko, A.: Tools for simulating features of composite order bilinear groups in the prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-29011-4_20 CrossRefGoogle Scholar
  29. 29.
    Lewko, A., Meiklejohn, S.: A profitable sub-prime loan: obtaining the advantages of composite order in prime-order bilinear groups. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 377–398. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46447-2_17 Google Scholar
  30. 30.
    Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 455–479. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-11799-2_27 CrossRefGoogle Scholar
  31. 31.
    Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-20465-4_30 CrossRefGoogle Scholar
  32. 32.
    Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achieving full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32009-5_12 CrossRefGoogle Scholar
  33. 33.
    Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: attribute-based encryption and (hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13190-5_4 CrossRefGoogle Scholar
  34. 34.
    Meiklejohn, S., Shacham, H., Freeman, D.M.: Limitations on transformations from composite-order to prime-order groups: the case of round-optimal blind signatures. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 519–538. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-17373-8_30 CrossRefGoogle Scholar
  35. 35.
    Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-10366-7_13 CrossRefGoogle Scholar
  36. 36.
    Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14623-7_11 CrossRefGoogle Scholar
  37. 37.
    Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 349–366. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-34961-4_22 CrossRefGoogle Scholar
  38. 38.
    Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public: verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28914-9_24 CrossRefGoogle Scholar
  39. 39.
    Rouselakis, Y., Waters, B..: Practical constructions and new proof methods for large universe attribute-based encryption. In: ACM CCS 2013, pp. 463–474 (2013)Google Scholar
  40. 40.
    Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). doi: 10.1007/11426639_27 CrossRefGoogle Scholar
  41. 41.
    Seo, J.H., Cheon, J.H.: Beyond the limitation of prime-order bilinear groups, and round optimal blind signatures. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 133–150. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28914-9_8 CrossRefGoogle Scholar
  42. 42.
    Takashima, K.: Expressive attribute-based encryption with constant-size ciphertexts from the decisional linear assumption. In: Abdalla, M., Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 298–317. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-10879-7_17 Google Scholar
  43. 43.
    Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-19379-8_4 CrossRefGoogle Scholar
  44. 44.
    Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03356-8_36 CrossRefGoogle Scholar
  45. 45.
    Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32009-5_14 CrossRefGoogle Scholar
  46. 46.
    Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54242-8_26 CrossRefGoogle Scholar
  47. 47.
    Wee, H.: Déjà Q: encore! un petit IBE. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 237–258. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49099-0_9 CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2016

Authors and Affiliations

  1. 1.National Institute of Advanced Industrial Science and Technology (AIST)TokyoJapan

Personalised recommendations