Advertisement

How to Obtain Fully Structure-Preserving (Automorphic) Signatures from Structure-Preserving Ones

  • Yuyu Wang
  • Zongyang ZhangEmail author
  • Takahiro Matsuda
  • Goichiro Hanaoka
  • Keisuke Tanaka
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10032)

Abstract

In this paper, we bridge the gap between structure-preserving signatures (SPSs) and fully structure-preserving signatures (FSPSs). In SPSs, all the messages, signatures, and verification keys consist only of group elements, while in FSPSs, even signing keys are required to be a collection of group elements. To achieve our goal, we introduce two new primitives called trapdoor signature and signature with auxiliary key, both of which can be derived from SPSs. By carefully combining both primitives, we obtain generic constructions of FSPSs from SPSs. Upon instantiating the above two primitives, we get many instantiations of FSPS with unilateral and bilateral message spaces. Different from previously proposed FSPSs, many of our instantiations also have the automorphic property, i.e., a signer can sign his own verification key. As by-product results, one of our instantiations has the shortest verification key size, signature size, and lowest verification cost among all previous constructions based on standard assumptions, and one of them is the first FSPS scheme in the type I bilinear groups.

Keywords

Signature Trapdoor signature Fully structure-preserving Automorphic 

References

  1. 1.
    Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Constant-size structure-preserving signatures: generic constructions and simple assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 4–24. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-34961-4_3 CrossRefGoogle Scholar
  2. 2.
    Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged one-time signatures: tight security and optimal tag size. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 312–331. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36362-7_20 CrossRefGoogle Scholar
  3. 3.
    Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commitments to group elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14623-7_12 CrossRefGoogle Scholar
  4. 4.
    Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-preserving signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22792-9_37 CrossRefGoogle Scholar
  5. 5.
    Abe, M., Kohlweiss, M., Ohkubo, M., Tibouchi, M.: Fully structure-preserving signatures and shrinking commitments. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 35–65. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46803-6_2 Google Scholar
  6. 6.
    Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: new privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-34961-4_23 CrossRefGoogle Scholar
  7. 7.
    Baldimtsi, F., Chase, M., Fuchsbauer, G., Kohlweiss, M.: Anonymous transferable E-Cash. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 101–124. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46447-2_5 Google Scholar
  8. 8.
    Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham, H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03356-8_7 CrossRefGoogle Scholar
  9. 9.
    Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and noninteractive anonymous credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 356–374. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-78524-8_20 CrossRefGoogle Scholar
  10. 10.
    Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal definitions, simplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003). doi: 10.1007/3-540-39200-9_38 CrossRefGoogle Scholar
  11. 11.
    Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg (2005). doi: 10.1007/978-3-540-30574-3_11 CrossRefGoogle Scholar
  12. 12.
    Bellare, M., Shoup, S.: Two-tier signatures, strongly unforgeable signatures, and fiat-shamir without random oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 201–216. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-71677-8_14 CrossRefGoogle Scholar
  13. 13.
    Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and constructions without random oracles. J. Cryptology 22(1), 114–138 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Camenisch, J., Dubovitskaya, M., Enderlein, R.R., Neven, G.: Oblivious transfer with hidden access control from attribute-based encryption. In: Visconti, I., Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 559–579. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32928-9_31 CrossRefGoogle Scholar
  15. 15.
    Camenisch, J., Krenn, S., Shoup, V.: A framework for practical universally composable zero-knowledge protocols. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 449–467. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-25385-0_24 CrossRefGoogle Scholar
  16. 16.
    Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001). doi: 10.1007/3-540-44987-6_7 CrossRefGoogle Scholar
  17. 17.
    Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof systems and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 281–300. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-29011-4_18 CrossRefGoogle Scholar
  18. 18.
    Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable signatures: new definitions and delegatable anonymous credentials. In: CSF 2014, pp. 199–213. IEEE (2014)Google Scholar
  19. 19.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for diffie-hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40084-1_8 CrossRefGoogle Scholar
  21. 21.
    Even, S., Goldreich, O., Micali, S.: On-line/off-line digital signatures. J. Cryptology 9(1), 35–67 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Fuchsbauer, G.: Commuting signatures and verifiable encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 224–245. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-20465-4_14 CrossRefGoogle Scholar
  23. 23.
    Fuchsbauer, G., Hanser, C., Kamath, C., Slamanig, D.: Practical round-optimal blind signatures in the standard model from weaker assumptions. In: Zikas, V., Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 391–408. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-44618-9_21 CrossRefGoogle Scholar
  24. 24.
    Fuchsbauer, G., Hanser, C., Slamanig, D.: Practical round-optimal blind signatures in the standard model. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 233–253. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48000-7_12 CrossRefGoogle Scholar
  25. 25.
    Fuchsbauer, G., Vergnaud, D.: Fair blind signatures without random oracles. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 16–33. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-12678-9_2 CrossRefGoogle Scholar
  26. 26.
    Ghadafi, E.: More efficient structure-preserving signatures - or: Bypassing the type-III lower bounds. Cryptology ePrint Archive, Report 2016/255 (2016)Google Scholar
  27. 27.
    Ghadafi, E.: Short structure-preserving signatures. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 305–321. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-29485-8_18 CrossRefGoogle Scholar
  28. 28.
    Groth, J.: Efficient fully structure-preserving signatures for large messages. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 239–259. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48797-6_11 CrossRefGoogle Scholar
  29. 29.
    Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear groups. SIAM J. Comput. 41(5), 1193–1232 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32009-5_35 CrossRefGoogle Scholar
  31. 31.
    Kiltz, E., Pan, J., Wee, H.: Structure-preserving signatures from standard assumptions, revisited. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 275–295. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48000-7_14 CrossRefGoogle Scholar
  32. 32.
    Kiltz, E., Pan, J., Wee, H.: Structure-preserving signatures from standard assumptions, revisited. IACR Cryptology ePrint Archive 2015, 604 (2015)Google Scholar
  33. 33.
    Libert, B., Peters, T., Joye, M., Yung, M.: Linearly homomorphic structure-preserving signatures and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 289–307. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40084-1_17 CrossRefGoogle Scholar
  34. 34.
    Libert, B., Peters, T., Yung, M.: Group signatures with almost-for-free revocation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 571–589. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32009-5_34 CrossRefGoogle Scholar
  35. 35.
    Libert, B., Peters, T., Yung, M.: Short group signatures via structure-preserving signatures: standard model security from simple assumptions. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 296–316. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48000-7_15 CrossRefGoogle Scholar
  36. 36.
    Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures: extended abstract. In: Reiter, M.K., Samarati, P. (eds.) CCS 2001, pp. 245–254. ACM (2001)Google Scholar
  37. 37.
    Rial, A., Kohlweiss, M., Preneel, B.: Universally composable adaptive priced oblivious transfer. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 231–247. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03298-1_15 CrossRefGoogle Scholar
  38. 38.
    Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27(4), 701–717 (1980)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2016

Authors and Affiliations

  • Yuyu Wang
    • 1
    • 2
  • Zongyang Zhang
    • 2
    Email author
  • Takahiro Matsuda
    • 2
  • Goichiro Hanaoka
    • 2
  • Keisuke Tanaka
    • 1
    • 3
  1. 1.Tokyo Institute of TechnologyTokyoJapan
  2. 2.National Institute of Advanced Industrial Science and Technology (AIST)TokyoJapan
  3. 3.JST CRESTTokyoJapan

Personalised recommendations