Statistical Fault Attacks on Nonce-Based Authenticated Encryption Schemes

  • Christoph Dobraunig
  • Maria Eichlseder
  • Thomas Korak
  • Victor Lomné
  • Florian Mendel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10031)

Abstract

Since the first demonstration of fault attacks by Boneh et al. on RSA, a multitude of fault attack techniques on various cryptosystems have been proposed. Most of these techniques, like Differential Fault Analysis, Safe Error Attacks, and Collision Fault Analysis, have the requirement to process two inputs that are either identical or related, in order to generate pairs of correct/faulty ciphertexts. However, when targeting authenticated encryption schemes, this is in practice usually precluded by the unique nonce required by most of these schemes.

In this work, we present the first practical fault attacks on several nonce-based authenticated encryption modes for AES. This includes attacks on the ISO/IEC standards GCM, CCM, EAX, and OCB, as well as several second-round candidates of the ongoing CAESAR competition. All attacks are based on the Statistical Fault Attacks by Fuhr et al., which use a biased fault model and just operate on collections of faulty ciphertexts. Hereby, we put effort in reducing the assumptions made regarding the capabilities of an attacker as much as possible. In the attacks, we only assume that we are able to influence some byte (or a larger structure) of the internal AES state before the last application of MixColumns, so that the value of this byte is afterwards non-uniformly distributed.

In order to show the practical relevance of Statistical Fault Attacks and for evaluating our assumptions on the capabilities of an attacker, we perform several fault-injection experiments targeting real hardware. For instance, laser fault injections targeting an AES co-processor of a smartcard microcontroller, which is used to implement modes like GCM or CCM, show that 4 bytes (resp. all 16 bytes) of the last round key can be revealed with a small number of faulty ciphertexts.

Keywords

Fault attacks Authenticated encryption CAESAR Differential Fault Attacks (DFA) Statistical Fault Attacks (SFA) 

References

  1. 1.
    AVR crypto lib. http://avrcryptolib.das-labor.org. Accessed 13 Jan 2016
  2. 2.
    Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mendel, F., Mennink, B., Mouha, N., Wang, Q., Yasuda, K.: PRIMATEs. Submission to the CAESAR Competition (Round 2). http://competitions.cr.yp.to/round2/primatesv102.pdf
  3. 3.
    Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: APE: authenticated permutation-based encryption for lightweight cryptography. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 168–186. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46706-0_9 Google Scholar
  4. 4.
    Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda, K.: AES-COPA. Submission to the CAESAR Competition (Round 2). http://competitions.cr.yp.to/round2/aescopav2.pdf
  5. 5.
    Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda, K.: Parallelizable and authenticated online ciphers. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 424–443. Springer, Heidelberg (2013). doi:10.1007/978-3-642-42033-7_22 CrossRefGoogle Scholar
  6. 6.
    Balasch, J., Gierlichs, B., Verbauwhede, I.: An in-depth and black-box characterization of the effects of clock glitches on 8-bit MCUs. In: Fault Diagnosis and Tolerance in Cryptography - FDTC 2011, pp. 105–114. IEEE (2011)Google Scholar
  7. 7.
    Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s apprentice guide to fault attacks. In: Fault Diagnosis and Tolerance in Cryptography - FDTC 2004, pp. 330–342 (2004)Google Scholar
  8. 8.
    Batu, T., Fortnow, L., Rubinfeld, R., Smith, W.D., White, P.: Testing closeness of discrete distributions. J. ACM 60(1), 4 (2013)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Bellare, M., Rogaway, P., Wagner, D.: The EAX mode of operation. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 389–407. Springer, Heidelberg (2004). doi:10.1007/978-3-540-25937-4_25 CrossRefGoogle Scholar
  10. 10.
    Biehl, I., Meyer, B., Müller, V.: Differential fault attacks on elliptic curve cryptosystems. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 131–146. Springer, Heidelberg (2000). doi:10.1007/3-540-44598-6_8 CrossRefGoogle Scholar
  11. 11.
    Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997). doi:10.1007/BFb0052259 CrossRefGoogle Scholar
  12. 12.
    Blömer, J., Krummel, V.: Fault based collision attacks on AES. In: Breveglieri, L., Koren, I., Naccache, D., Seifert, J.-P. (eds.) FDTC 2006. LNCS, vol. 4236, pp. 106–120. Springer, Heidelberg (2006). doi:10.1007/11889700_11 CrossRefGoogle Scholar
  13. 13.
    Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryptographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997). doi:10.1007/3-540-69053-0_4 CrossRefGoogle Scholar
  14. 14.
    Datta, N., Nandi, M.: ELmD. Submission to the CAESAR Competition (Round 2). http://competitions.cr.yp.to/round2/elmdv20.pdf
  15. 15.
    Diffie, W., Hellman, M.E.: Privacy and authentication: an introduction to cryptography. Proc. IEEE 67(3), 397–427 (1979)CrossRefGoogle Scholar
  16. 16.
    Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon. Submission to the CAESAR Competition (Round 2). http://competitions.cr.yp.to/round2/asconv11.pdf
  17. 17.
    Dworkin, M.: Recommendation for block cipher modes of operation. NIST Spec. Publ. 800(38A), 1–59 (2001)Google Scholar
  18. 18.
    Fuhr, T., Jaulmes, É., Lomné, V., Thillard, A.: Fault attacks on AES with faulty ciphertexts only. In: Fischer, W., Schmidt, J. (eds.) Fault Diagnosis and Tolerance in Cryptography - FDTC 2013, pp. 108–118. IEEE Computer Society, Washington, DC (2013)CrossRefGoogle Scholar
  19. 19.
    Goldreich, O., Ron, D.: On testing expansion in bounded-degree graphs. Electron. Colloquium Comput. Complex. (ECCC) 7(20), 1–6 (2000)MATHGoogle Scholar
  20. 20.
    Grosso, V., Leurent, G.L., Standaert, F., Varici, K., Journault, A., Durvaux, F., Gaspar, L., Kerckhof, S.: SCREAM. Submission to the CAESAR Competition (Round 2). http://competitions.cr.yp.to/round2/screamv3.pdf
  21. 21.
    Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional extension of Matsui’s Algorithm 2. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 209–227. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03317-9_13 CrossRefGoogle Scholar
  22. 22.
    Iwata, T., Minematsu, K., Guo, J., Morioka, S., Kobayashi, E.: CLOC. Submission to the CAESAR Competition (Round 2). http://competitions.cr.yp.to/round2/clocv2.pdf
  23. 23.
    Iwata, T., Minematsu, K., Guo, J., Morioka, S., Kobayashi, E.: SILC. Submission to the CAESAR Competition (Round 2). http://competitions.cr.yp.to/round2/silcv2.pdf
  24. 24.
    Jean, J., Nikolic, I., Peyrin, T.: Deoxys. Submission to the CAESAR Competition (Round 2). http://competitions.cr.yp.to/round2/deoxysv13.pdf
  25. 25.
    Jean, J., Nikolic, I., Peyrin, T.: Joltik. Submission to the CAESAR Competition (Round 2). http://competitions.cr.yp.to/round2/joltikv13.pdf
  26. 26.
    Jean, J., Nikolic, I., Peyrin, T.: KIASU. Submission to the CAESAR Competition (Round 1). http://competitions.cr.yp.to/round1/kiasuv1.pdf
  27. 27.
    Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 274–288. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8_15 Google Scholar
  28. 28.
    Jutla, C.S.: Encryption modes with almost free message integrity. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 529–544. Springer, Heidelberg (2001). doi:10.1007/3-540-44987-6_32 CrossRefGoogle Scholar
  29. 29.
    Kavun, E.B., Lauridsen, M.M., Leander, G., Rechberger, C., Schwabe, P., Yalçin, T.: Prøst. Submission to the CAESAR Competition (Round 1). http://competitions.cr.yp.to/round1/proestv11.pdf
  30. 30.
    Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21702-9_18 CrossRefGoogle Scholar
  31. 31.
    Maurine, P.: Techniques for EM fault injection: equipments and experimental results. In: Bertoni, G., Gierlichs, B. (eds.) Fault Diagnosis and Tolerance in Cryptography - FDTC 2012, pp. 3–4. IEEE Computer Society, Washington, DC (2012)CrossRefGoogle Scholar
  32. 32.
    McGrew, D.A., Viega, J.: The security and performance of the galois/counter mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30556-9_27 CrossRefGoogle Scholar
  33. 33.
    Tunstall, M., Mukhopadhyay, D., Ali, S.: Differential fault analysis of the advanced encryption standard using a single fault. In: Ardagna, C.A., Zhou, J. (eds.) WISTP 2011. LNCS, vol. 6633, pp. 224–233. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21040-2_15 CrossRefGoogle Scholar
  34. 34.
    Minematsu, K.: AES-OTR. Submission to the CAESAR Competition (Round 2). http://competitions.cr.yp.to/round2/aesotrv2.pdf
  35. 35.
    Minematsu, K.: Parallelizable rate-1 authenticated encryption from pseudorandom functions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 275–292. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5_16 CrossRefGoogle Scholar
  36. 36.
    Paninski, L.: A coincidence-based test for uniformity given very sparsely sampled discrete data. IEEE Trans. Inf. Theory 54(10), 4750–4755 (2008)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Piret, G., Quisquater, J.-J.: A differential fault attack technique against SPN structures, with application to the AES and Khazad. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45238-6_7 CrossRefGoogle Scholar
  38. 38.
    Rivain, M.: Differential fault analysis on DES middle rounds. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 457–469. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04138-9_32 CrossRefGoogle Scholar
  39. 39.
    Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 16–31. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30539-2_2 CrossRefGoogle Scholar
  40. 40.
    Rogaway, P., Bellare, M., Black, J.: OCB: a block-cipher mode of operation for efficient authenticated encryption. ACM Trans. Inf. Syst. Secur. 6(3), 365–403 (2003)CrossRefGoogle Scholar
  41. 41.
    Rubinfeld, R.: Taming big probability distributions. ACM Crossroads 19(1), 24–28 (2012)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Saha, D., Chowdhury, D.R.: Scope: on the side channel vulnerability of releasing unverified plaintexts. In: Dunkelman, O., Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp. 417–438. Springer, Heidelberg (2016). doi:10.1007/978-3-319-31301-6_24 CrossRefGoogle Scholar
  43. 43.
    Saha, D., Kuila, S., Roy Chowdhury, D.: EscApe: diagonal fault analysis of APE. In: Meier, W., Mukhopadhyay, D. (eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp. 197–216. Springer, Heidelberg (2014). doi:10.1007/978-3-319-13039-2_12 Google Scholar
  44. 44.
    Samajder, S., Sarkar, P.: Another look at normal approximations in cryptanalysis. Cryptology ePrint Archive, Report 2015/679 (2015). http://ia.cr/2015/679
  45. 45.
    Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski Jr., B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer, Heidelberg (2003). doi:10.1007/3-540-36400-5_2 CrossRefGoogle Scholar
  46. 46.
    The CAESAR committee: CAESAR: Competition for authenticated encryption: Security, applicability, and robustness (2014). http://competitions.cr.yp.to/caesar.html
  47. 47.
    Wang, L.: Shell. Submission to the CAESAR Competition (Round 2). http://competitions.cr.yp.to/round2/shellv20.pdf
  48. 48.
    Whiting, D., Ferguson, N., Housley, R.: Counter with CBC-MAC (CCM). RFC 3610 (2003)Google Scholar
  49. 49.
    Yen, S., Joye, M.: Checking before output may not be enough against fault-based cryptanalysis. IEEE Trans. Comput. 49(9), 967–970 (2000). http://dx.doi.org/10.1109/12.869328 CrossRefMATHGoogle Scholar
  50. 50.
    Zussa, L., Dutertre, J.M., Clediere, J., Tria, A.: Power supply glitch induced faults on FPGA: an in-depth analysis of the injection mechanism. In: On-Line Testing Symposium - IOLTS 2013, pp. 110–115. IEEE (2013)Google Scholar

Copyright information

© International Association for Cryptologic Research 2016

Authors and Affiliations

  • Christoph Dobraunig
    • 1
  • Maria Eichlseder
    • 1
  • Thomas Korak
    • 1
  • Victor Lomné
    • 2
  • Florian Mendel
    • 1
  1. 1.Graz University of TechnologyGrazAustria
  2. 2.ANSSIParisFrance

Personalised recommendations