Proof Assistants for Natural Language Semantics

  • Stergios ChatzikyriakidisEmail author
  • Zhaohui Luo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10054)


In this paper we discuss the use of interactive theorem provers (also called proof assistants) in the study of natural language semantics. It is shown that these provide useful platforms for NL semantics and reasoning on the one hand, and allow experiments to be performed on various frameworks and new theories, on the other. In particular, we show how to use Coq, a prominent type theory based proof assistant, to encode type theoretical semantics of various NL phenomena. In this respect, we can encode the NL semantics based on type theory for quantifiers, adjectives, common nouns, and tense, among others, and it is shown that Coq is a powerful engine for checking the formal validity of these accounts as well as a powerful reasoner about the implemented semantics. We further show some toy semantic grammars for formal semantic systems, like the Montagovian Generative Lexicon, Type Theory with Records and neo-Davidsonian semantics. It is also explained that experiments on new theories can be done as well, testing their validity and usefulness. Our aim is to show the importance of using proof assistants as useful tools in natural language reasoning and verification and argue for their wider application in the field.


Type theory Proof assistants Reasoning Formal semantics Coq 


  1. 1.
  2. 2.
    Bekki, D.: Representing anaphora with dependent types. In: Asher, N., Soloviev, S. (eds.) LACL 2014. LNCS, vol. 8535, pp. 14–29. Springer, Heidelberg (2014)Google Scholar
  3. 3.
    de Bruijn, N.: A survey of the project AUTOMATH. In: Hindley, J., Seldin, J., To, H.B. (eds.) Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism. Academic Press, Cambridge (1980)Google Scholar
  4. 4.
    Chatzikyriakidis, S., Luo, Z.: Adjectives in a modern type-theoretical setting. In: Morrill, G., Nederhof, M.-J. (eds.) FG 2012–2013. LNCS, vol. 8036, pp. 159–174. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39998-5_10 CrossRefGoogle Scholar
  5. 5.
    Chatzikyriakidis, S., Luo, Z.: Natural language inference in Coq. J. Log. Lang. Inf. 23(4), 441–480 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chatzikyriakidis, S., Luo, Z.: Natural language reasoning using proof-assistant technology: rich typing and beyond. In: Proceedings of EACL 2014 (2014)Google Scholar
  7. 7.
    Chatzikyriakidis, S., Luo, Z.: Using signatures in type theory to represent situations. In: Logic and Engineering of Natural Language Semantics 11, Tokyo (2014)Google Scholar
  8. 8.
    Chatzikyriakidis, S., Luo, Z.: On the interpretation of common nouns: types v.s. predicates. In: Chatzikyriakidis, S., Luo, Z. (eds.) Modern Perspectives in Type Theoretical Semantics. Studies of Linguistics and Philosophy, Springer, Heidelberg (2016, to appear)Google Scholar
  9. 9.
    Cooper, R.: Records and record types in semantic theory. J. Log. Comput. 15(2), 99–112 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cooper, R., Ginzburg, J.: A compositional situation semantics for attitude reports. In: Selignmann, J., Westerstahl, D. (eds.) Logic, Language and Computation, CSLI (1996)Google Scholar
  11. 11.
    The Coq Team: The Coq Proof Assistant Reference Manual (Version 8.1). Inria, Rennes (2007)Google Scholar
  12. 12.
    Girard, J.Y.: Interprétation fonctionelle et élimination des coupures de l’arithmétique d’ordre supérieur. Ph.D. thesis, Université Paris VII (1972)Google Scholar
  13. 13.
    Gonthier, G.: A computer-checked proof of the Four Colour Theorem (2005).
  14. 14.
    Kahle, R., Schroeder-Heister, P. (eds.): Proof-Theoretic Semantics. Special Issue of Synthese 148(3), 503–743 (2006)Google Scholar
  15. 15.
    Keller, C., Werner, B.: Importing HOL light into Coq. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 307–322. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14052-5_22 CrossRefGoogle Scholar
  16. 16.
    Krahmer, E., Piwek, P.: Presupposition projection as proof construction. In: Bunt, H., Muskens, R. (eds.) Computing Meaning. SLP, vol. 73, pp. 281–300. Springer, Dordrecht (1999)CrossRefGoogle Scholar
  17. 17.
    Lungu, G.E., Luo, Z.: Monotonicity reasoning in formal semantics based on modern type theories. In: Asher, N., Soloviev, S. (eds.) LACL 2014. LNCS, vol. 8538, pp. 138–148. Springer, Heidelberg (2014)Google Scholar
  18. 18.
    Luo, Z.: Computation and Reasoning: A Type Theory for Computer Science. Oxford University Press, Oxford (1994)zbMATHGoogle Scholar
  19. 19.
    Luo, Z.: Coercive subtyping in type theory. In: Dalen, D., Bezem, M. (eds.) CSL 1996. LNCS, vol. 1258, pp. 275–296. Springer, Heidelberg (1997). doi: 10.1007/3-540-63172-0_45 CrossRefGoogle Scholar
  20. 20.
    Luo, Z.: Type-theoretical semantics with coercive subtyping. In: Semantics and Linguistic Theory 20 (SALT20), Vancouver (2010)Google Scholar
  21. 21.
    Luo, Z.: Contextual analysis of word meanings in type-theoretical semantics. In: Pogodalla, S., Prost, J.-P. (eds.) LACL 2011. LNCS (LNAI), vol. 6736, pp. 159–174. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22221-4_11 CrossRefGoogle Scholar
  22. 22.
    Luo, Z.: Common nouns as types. In: Béchet, D., Dikovsky, A. (eds.) LACL 2012. LNCS, vol. 7351, pp. 173–185. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31262-5_12 CrossRefGoogle Scholar
  23. 23.
    Luo, Z.: Formal semantics in modern type theories with coercive subtyping. Linguist. Philos. 35(6), 491–513 (2012)CrossRefGoogle Scholar
  24. 24.
    Luo, Z.: Formal semantics in modern type theories: is it model-theoretic, proof-theoretic, or both? In: Asher, N., Soloviev, S. (eds.) LACL 2014. LNCS, vol. 8535, pp. 177–188. Springer, Heidelberg (2014)Google Scholar
  25. 25.
    Luo, Z., Soloviev, S.: Dependent event types (abstract). In: LACL 2016 (2016)Google Scholar
  26. 26.
    Luo, Z., Soloviev, S., Xue, T.: Coercive subtyping: theory and implementation. Inf. Comput. 223, 18–42 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Parsons, T.: Events in the Semantics of English. MIT Press, Cambridge (1990)Google Scholar
  28. 28.
    The Univalent Foundations Program: Homotopy type theory: univalent foundations of mathematics. Technical report, Institute for Advanced Study (2013)Google Scholar
  29. 29.
    Ranta, A.: Type-Theoretical Grammar. Oxford University Press, Oxford (1994)zbMATHGoogle Scholar
  30. 30.
    Retoré, C.: The montagovian generative lexicon Tyn: a type theoretical framework for natural language semantics. In: Matthes, R., Schubert, A. (eds.) 19th International Conference on Types for Proofs and Programs (TYPES 2013), vol. 26, pp. 202–229 (2013)Google Scholar
  31. 31.
    Reynolds, J.C.: Towards a theory of type structure. In: Robinet, B. (ed.) Programming Symposium. LNCS, vol. 19, pp. 408–425. Springer, Heidelberg (1974). doi: 10.1007/3-540-06859-7_148 CrossRefGoogle Scholar
  32. 32.
    Sassoon, G.: A typology of multidimensional adjectives. J. Semant. 30(3), 335–380 (2013)CrossRefGoogle Scholar
  33. 33.
    Tanaka, R., Mineshima, K., Bekki, D.: Factivity and presupposition in dependent type semantics. In: Type Theories and Lexical Semantics Workshop (2015)Google Scholar
  34. 34.
    Voevodsky, V.: Experimental library of univalent formalization of mathematics. Math. Struct. Comput. Sci. 25, 1278–1294 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2016

Authors and Affiliations

  1. 1.Department of Philosophy, Linguistics and Theory of ScienceUniversity of GothenburgGothenburgSweden
  2. 2.Open University of CyprusNicosiaCyprus
  3. 3.Department of Computer ScienceRoyal Holloway, University of LondonLondonUK

Personalised recommendations