Advertisement

Zusammenfassung

Die pränatale Chromosomendiagnostik ist in zahlreichen Labors als Routineverfahren etabliert. Zur Durchführung der pränatalen Analysen ist ein invasives Verfahren erforderlich. Die Amniozentese im II. Trimester stellt das weltweit am häufigsten eingesetzte Punktionsverfahren dar. Der optimale Zeitpunkt für die Durchführung der Amniozentese liegt nach 15+0 SSW. Die Chorionzottenbiopsie (CVS) steht als alternative Punktionsart für das I. Trimester zur Verfügung. Die eingriffsbedingen Verlustraten nach transabdominaler CVS und Amniozentese im II. Trimester sind mit ca. 0,2 % vergleichbar. Mit zunehmender Verbreitung und Akzeptanz der sonographischen und biochemischen Diagnostik sowie des Screenings mittels zellfreier DNA-Tests ist allerdings in vielen Ländern ein Trend zu einem Rückgang an invasiven Eingriffen insgesamt zu beobachten.

Literatur

  1. Agarwal K, Alfirevic Z (2012) Pregnancy loss after chorionic villus sampling and genetic amniocentesis in twin pregnancies – a systematic review. Ultrasound Obstet Gynecol 40: 128–134Google Scholar
  2. Akolekar R, Beta J, Picciarelli G, Ogilvie C, D’Antonio F (2015) Procedure-related risk of miscarriage following amniocentesis and chorionic villus sampling: a systematic review and meta-analysis. Ultrasound Obstet Gynecol 45: 16–26Google Scholar
  3. Alfirevic Z, Pilu G (2009) Antibiotic prophylaxis for amniocentesis. Prenat Diagn 29: 1094Google Scholar
  4. Alfirevic Z, Sundberg K, Brigham S (2003) Amniocentesis and chorionic villus sampling for prenatal diagnosis. Cochrane Database Syst Rev CD003252Google Scholar
  5. Athanasiadis AP, Pantazis K, Goulis DG, Chatzigeorgiou K, Vaitsi V, Assimakopoulos E, Tzevelekis F, Tsalikis T, Bontis JN (2009) Comparison between 20G und 22G needle for second trimester amniocentesis in terms of technical aspects and short-term complications. Prenat Diagn 29: 761–765Google Scholar
  6. Brambati B, Tului L (2005) Chorionic villus sampling and amniocentesis. Curr Opin Obstet Gynecol 17: 197–201Google Scholar
  7. Caughey AB, Hopkins LM, Norton ME (2006) Chorionic villus sampling compared with amniocentesis and the difference in the rate of pregnancy loss. Obstet Gynecol 108: 612–616Google Scholar
  8. Cederholm M, Haglund B, Axelsson O (2005) Infant morbidity following amniocentesis and chorionic villus sampling for prenatal karyotyping. BJOG 112: 394–402Google Scholar
  9. CEMAT-Group (The Canadian Early and Mid-trimester Amniocentesis Trial) (1998) Randomised trial to assess safety and fetal outcome of early and midtrimester amniocentesis. Lancet 351: 242–247Google Scholar
  10. Corrado F, Cannata ML, La Galia T, Magliarditi M, Imbruglia L, D’anna R, Carlo Stella N (2012) Pregnancy outcome following mid-trimester amniocentesis. J Obstet Gynaecol 32: 117–119Google Scholar
  11. Eddleman KA, Malone FD, Sullivan L, Dukes K, Berkowitz RL, Kharbutli Y, Porter TF, Luthy DA, Comstock CH, Saade GR, Klugman S, Dugoff L, Craigo SD, Timor-Tritsch IE, Carr SR, Wolfe HM, D’Alton ME (2006) Pregnancy loss rates after midtrimester amniocentesis. Obstet Gynecol 108: 1067–1072Google Scholar
  12. Enzensberger C, Pulvermacher C, Degenhardt J, Kawacki A, Germer U, Gembruch U, Krapp M, Weichert J, Axt-Fliedner R (2012) Fetal loss rate and associated risk factors after amniocentesis, chorionic villus sampling and fetal blood sampling. Ultraschall Med 33: E75–79Google Scholar
  13. Fassihi H, McGrath JA (2010) Prenatal diagnosis of epidermolysis bullosa. Dermatol Clin 28: 231–237 (viii)Google Scholar
  14. Ferrazzi E (2010) Antibiotic prophylaxis before second-trimester genetic amniocentesis. Prenat Diagn 30: 189–190Google Scholar
  15. Geipel A, Daiss T, Katalinic A, Germer U, Kohl T, Krapp M, Gembruch U, Berg C (2007) Changing attitudes towards non-invasive aneuploidy screening at advanced maternal age in a German tertiary care center. Ultraschall Med 28: 67–70Google Scholar
  16. Gil MM, Quezada MS, Revello R, Akolekar R, Nicolaides KH (2015) Analysis of cell-free DNA in maternal blood in screening for fetal aneuploidies: updated meta-analysis. Ultrasound Obstet Gynecol 45: 249–266Google Scholar
  17. Giorlandino C, Cignini P, Cini M, Brizzi C, Carcioppolo O, Milite V, Coco C, Gentili P, Mangiafico L, Mesoraca A, Bizzoco D, Gabrielli I, Mobili L (2009) Antibiotic prophylaxis before second-trimester genetic amniocentesis (APGA): a single-centre open randomised controlled trial. Prenat Diagn 29: 606–612Google Scholar
  18. Gramellini D, Fieni S, Casilla G, Raboni S, Nardelli GB (2007) Mid-trimester amniocentesis and antibiotic prophylaxis. Prenat Diagn 27: 956–959Google Scholar
  19. Grobman WA, Auger M, Shulman LP, Elias S (2009) The association between chorionic villus sampling and preeclampsia. Prenat Diagn 29: 800–803Google Scholar
  20. Hagen A, Entezami M, Gasiorek-Wiens A, Albig M, Becker R, Knoll U, Stumm M, Wegner RD (2011) The impact of first trimester screening and early fetal anomaly scan on invasive testing rates in women with advanced maternal age. Ultraschall Med 32: 302–306Google Scholar
  21. Jenkins TM, Wapner RJ (2000) The challenge of prenatal diagnosis in twin pregnancies. Curr Opin Obstet Gynecol 12: 87–92Google Scholar
  22. Kähler C, Gembruch U, Heling KS, Henrich W, Schramm T (2013) DEGUM guidelines for amniocentesis and chorionic villus sampling. Ultraschall Med 34: 435–440Google Scholar
  23. Karasahin E, Alanbay I, Ercan M, Yenen MC, Dede M, Baser I (2009) Simple, cheap, practical and efficient amniocentesis training model made with materials found in every obstetrics clinic. Prenat Diagn 29: 1069–1070Google Scholar
  24. Kasperski SB, Brennan AM, Corteville JE, Finkel RS, Golden J, Johnson MP, Wilson RD (2008) Utility of fetal muscle biopsy for diagnosis of nemaline myopathy. Fetal Diagn Ther 24: 400–404Google Scholar
  25. Khalil A, Akolekar R, Pandya P, Syngelaki A, Nicolaides K (2010) Chorionic villus sampling at 11 to 13 weeks of gestation and hypertensive disorders in pregnancy. Obstet Gynecol 116: 374–380Google Scholar
  26. Kong CW, Leung TN, Leung TY, Chan LW, Sahota DS, Fung TY, Lau TK (2006) Risk factors for procedure-related fetal losses after mid-trimester genetic amniocentesis. Prenat Diagn 26: 925–930Google Scholar
  27. Kozlowski P, Knippel A, Stressig R (2008) Individual risk of fetal loss following routine second trimester amniocentesis: a controlled study of 20460 cases. Ultraschall Med 29: 165–172Google Scholar
  28. Kulkarni ML, Vengalath S (1995) Prenatal diagnosis of genetic disorders. Indian Pediatr 32: 1229–1238Google Scholar
  29. Lam CW, Sin SY, Lau ET, Lam YY, Poon P, Tong SF (2000) Prenatal diagnosis of glycogen storage disease type 1b using denaturing high performance liquid chromatography. Prenat Diagn 20: 765–768Google Scholar
  30. Liao C, Wei J, Li Q, Li L, Li J, Li D (2006) Efficacy and safety of cordocentesis for prenatal diagnosis. Int J Gynaecol Obstet 93: 13–17Google Scholar
  31. Lichtenbelt KD, Alizadeh BZ, Scheffer PG, Stoutenbeek P, Schielen PC, Page-Christiaens LC, Schuring-Blom GH (2011) Trends in the utilization of invasive prenatal diagnosis in The Netherlands during 2000–2009. Prenat Diagn 31: 765–772Google Scholar
  32. Luu M, Cantatore-Francis JL, Glick SA (2010) Prenatal diagnosis of genodermatoses: current scope and future capabilities. Int J Dermatol 49: 353–361Google Scholar
  33. Mandelbrot L, Jasseron C, Ekoukou D, Batallan A, Bongain A, Pannier E, Blanche S, Tubiana R, Rouzioux C, Warszawski J (2009) ANRS French Perinatal Cohort (EPF). Amniocentesis and mother-to-child human immunodeficiency virus transmission in the Agence Nationale de Recherches sur le SIDA et les Hépatites Virales French Perinatal Cohort. Am J Obstet Gynecol 200: 160.e1–160.e9Google Scholar
  34. Manegold-Brauer G, Berg C, Flöck A, Rüland A, Gembruch U, Geipel A (2015) Uptake of non-invasive prenatal testing (NIPT) and impact on invasive procedures in a tertiary referral center. Arch Gynecol Obstet 292: 543–548Google Scholar
  35. Müngen E, Tütüncü L, Muhcu M, Yergök YZ (2006) Pregnancy outcome following second-trimester amniocentesis: a case-control study. Am J Perinatol 23: 25–30Google Scholar
  36. Muller F, Thibaud D, Poloce F, Gelineau MC, Bernard M, Brochet C, Millet C, Rèal JY, Dommergues M (2002) Risk of amniocentesis in women screened positive for Down syndrome with second trimester maternal serum markers. Prenat Diagn 22: 1036–1039Google Scholar
  37. Murotsuki J, Uehara S, Okamura K, Yajima A, Oura T, Miyabayashi S (1994) Fetal liver biopsy for prenatal diagnosis of carbamoyl phosphate synthetase deficiency. Am J Perinatol 11: 160–162Google Scholar
  38. Nadel AS, Likhite ML (2009) Impact of first-trimester aneuploidy screening in a high-risk population. Fetal Diagn Ther 26: 29–34Google Scholar
  39. Nevo Y, Shomrat R, Yaron Y, Orr-Urtreger A, Harel S, Legum C (1999) Fetal muscle biopsy as a diagnostic tool in Duchenne muscular dystrophy. Prenat Diagn 19: 921–926Google Scholar
  40. Nicolaides K, Brizot Mde L, Patel F, Snijders R (1994) Comparison of chorionic villus sampling and amniocentesis for fetal karyotyping at 10–13 weeks’ gestation. Lancet 344: 435–439Google Scholar
  41. Nicolini U, Spelzini F (2001) Invasive assessment of fetal renal abnormalities: urinalysis, fetal blood sampling and biopsy. Prenat Diagn 21: 964–969Google Scholar
  42. Nizard J (2010) Amniocentesis: technique and education. Curr Opin Obstet Gynecol 22: 152–154Google Scholar
  43. Nizard J, Duyme M, Ville Y (2002) Teaching ultrasound-guided invasive procedures in fetal medicine: learning curves with and without an electronic guidance system. Ultrasound Obstet Gynecol 19: 274–277Google Scholar
  44. Odibo AO, Dicke JM, Gray DL, Oberle B, Stamilio DM, Macones GA, Crane JP (2008a) Evaluating the rate and risk factors for fetal loss after chorionic villus sampling. Obstet Gynecol 2008 112: 813–819Google Scholar
  45. Odibo AO, Gray DL, Dicke JM, Stamilio DM, Macones GA, Crane JP (2008b) Revisiting the fetal loss rate after second-trimester genetic amniocentesis: a single center’s 16-year experience. Obstet Gynecol 2008 111: 589–595Google Scholar
  46. Odibo AO, Singla A, Gray DL, Dicke JM, Oberle B, Crane J (2010) Is chorionic villus sampling associated with hypertensive disorders of pregnancy? Prenat Diagn 30: 9–13Google Scholar
  47. Papantoniou N, Daskalakis G, Anastasakis E, Marinopoulos S, Mesogitis S, Antsaklis A (2008) Increasing the noninvasive management of rhesus isoimmunization. Int J Gynaecol Obstet 101: 281–284Google Scholar
  48. Pitukkijronnakorn S, Promsonthi P, Panburana P, Udomsubpayakul U, Chittacharoen A (2011) Fetal loss associated with second trimester amniocentesis. Arch Gynecol Obstet 284: 793–797Google Scholar
  49. Philip J, Silver RK, Wilson RD, Thom EA, Zachary JM, Mohide P, Mahoney MJ, Simpson JL, Platt LD, Pergament E, Hershey D, Filkins K, Johnson A, Shulman LP, Bang J, MacGregor S, Smith JR, Shaw D, Wapner RJ, Jackson LD, NICHD EATA Trial Group (2004) Late first-trimester invasive prenatal diagnosis: results of an international randomized trial. Obstet Gynecol 103: 1164–1173Google Scholar
  50. Quintero R, Hale-Burnett E, Bornick PW, Gilbert-Barness E (2007) Fetal laryngoscopy and lung biopsy in a case of bilateral lethal congenital cystic adenomatoid malformation of the lung. Fetal Pediatr Pathol 26: 229–234Google Scholar
  51. RCOG (Royal College of Obstetricians and Gynaecologists) (2010) Amniocentesis and chorion villous sampling, Green-top Guideline No 8Google Scholar
  52. Rochon M, Stone J (2003) Invasive procedures in multiple gestations. Curr Opin Obstet Gynecol 15: 167–175Google Scholar
  53. SMFM (Society for Maternal-Fetal Medicine), Berry SM, Stone J, Norton ME, Johnson D, Berghella V (2013) Fetal blood sampling. Am J Obstet Gynecol 209: 170–180Google Scholar
  54. Shimizu A, Akiyama M, Ishiko A, Yoshiike T, Suzumori K, Shimizu H (2005) Prenatal exclusion of harlequin ichthyosis potential pitfalls in the timing of the fetal skin biopsy. Br J Dermatol 153: 811–814Google Scholar
  55. Tabor A, Alfirevic Z (2010) Update on procedure-related risks for prenatal diagnosis techniques. Fetal Diagn Ther 27: 1–7Google Scholar
  56. Tabor A, Vestergaard CH, Lidegaard (2009) Fetal loss rate after chorionic villus sampling and amniocentesis: an 11-year national registry study. Ultrasound Obstet Gynecol 34: 19–24Google Scholar
  57. Tangshewinsirikul C, Wanapirak C, Piyamongkol W, Sirichotiyakul S, Tongsong T (2011) Effect of cord puncture site in cordocentesis at mid-pregnancy on pregnancy outcomes. Prenat Diagn 9: 861–864Google Scholar
  58. Tongprasert F, Srisupundit K, Luewan S, Phadungkiatwattana Pranpanus S, Tongson T (2010) Midpregnancy cordocentesis training of maternal-fetal medicine fellows. Ultrasound Obstet Gynecol 36: 65–68Google Scholar
  59. Tongsong T, Wanapirak C, Kunavikatikul C, Sirichotiyakul S, Piyamongkol W, Chanprapaph P (2000) Cordocentesis at 16–24 weeks of gestation: experience of 1,320 cases. Prenat Diagn 20: 224–228Google Scholar
  60. Towner D, Currier RJ, Lorey FW, Cunningham GC, Greve LC (2007) Miscarriage risk from amniocentesis performed for abnormal maternal serum screening. Am J Obstet Gynecol;196: 608.e1–5Google Scholar
  61. Vestergaard C, Lidegaard M, Tabor A (2009) Invasive prenatal diagnostic practice in Denmark 1996 to 2006. Acta Obstet Gynecol Scand 88: 362–365Google Scholar
  62. Ville Y, Cooper M, Revel A, Frydman R, Nicolaides KH (1995) Development of a training model for ultrasound-guided invasive procedures in fetal medicine. Ultrasound Obstet Gynecol 5: 180–183Google Scholar
  63. Warsof SL, Larion S, Abuhamad AZ (2015) Overview of the impact of noninvasive prenatal testing on diagnostic procedures. Prenat Diagn 35: 972–979Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2018

Authors and Affiliations

  1. 1.Universitätsklinikum BonnAbt. für Geburtshilfe/Pränatale MedizinBonnDeutschland

Personalised recommendations