Compactness vs Collusion Resistance in Functional Encryption

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9986)

Abstract

We present two general constructions that can be used to combine any two functional encryption (FE) schemes (supporting a bounded number of key queries) into a new functional encryption scheme supporting a larger number of key queries. By using these constructions iteratively, we transform any primitive FE scheme supporting a single functional key query (from a sufficiently general class of functions) and has certain weak compactness properties to a collusion-resistant FE scheme with the same or slightly weaker compactness properties. Together with previously known reductions, this shows that the compact, weakly compact, collusion-resistant, and weakly collusion-resistant versions of FE are all equivalent under polynomial time reductions. These are all FE variants known to imply the existence of indistinguishability obfuscation, and were previously thought to offer slightly different avenues toward the realization of obfuscation from general assumptions. Our results show that they are indeed all equivalent, improving our understanding of the minimal assumptions on functional encryption required to instantiate indistinguishability obfuscation.

References

  1. 1.
    Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption: new perspectives and lower bounds. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 500–518. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  3. 3.
    Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 308–326. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  4. 4.
    Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation from functional encryption for simple functions. IACR Cryptology ePrint Archive 2015, 730 (2015). http://eprint.iacr.org/2015/730
  5. 5.
    Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 528–556. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  6. 6.
    Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  7. 7.
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012). (In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001))MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V., Waters, B.: Time-lock puzzles from randomized encodings. In: Innovations in Theoretical Computer Science, pp. 345–356 (2016)Google Scholar
  9. 9.
    Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional encryption. In: Foundations of Computer Science, FOCS, pp. 171–190 (2015)Google Scholar
  10. 10.
    Boneh, D., Sahai, A., Waters, B.: Functional encryption: a new vision for public-key cryptography. Commun. ACM 55(11), 56–64 (2012)CrossRefGoogle Scholar
  11. 11.
    Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 1–25. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  12. 12.
    Brakerski, Z., Segev, G.: Function-private functional encryption in the private-key setting. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 306–324. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  13. 13.
    Brakerski, Z., Segev, G.: Hierarchical functional encryption. IACR Cryptology ePrint Archive 2015, 1011 (2015). http://eprint.iacr.org/2015/1011
  14. 14.
    Chandran, N., Chase, M., Vaikuntanathan, V.: Functional re-encryption and collusion-resistant obfuscation. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 404–421. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015)Google Scholar
  16. 16.
    Chung, K.-M., Lin, H., Pass, R.: Constant-round concurrent zero-knowledge from indistinguishability obfuscation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 287–307. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  17. 17.
    Coron, J., Gentry, C., Halevi, S., Lepoint, T., Maji, H.K., Miles, E., Raykova, M., Sahai, A., Tibouchi, M.: Zeroizing without low-level zeroes: new MMAP attacks and their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 247–266. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  18. 18.
    Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Coron, J., Lepoint, T., Tibouchi, M.: New multilinear maps over the integers. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 267–286. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  20. 20.
    Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Nguyen, P.Q., Johansson, T. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: Foundations of Computer Science, FOCS, pp. 40–49 (2013)Google Scholar
  22. 22.
    Garg, S., Srinivasan, A.: Single-key to multi-key functional encryption with polynomial loss. In: Hirt, M., Smith, A. (eds.) TCC 2016-B, Part II. LNCS, vol. 9986, pp. 419–442. Springer, Heidelberg (2016). http://eprint.iacr.org/2016/524 Google Scholar
  23. 23.
    Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lattices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 498–527. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  24. 24.
    Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfuscation from the multilinear subgroup elimination assumption. In: Foundations of Computer Science, FOCS, pp. 151–170 (2015)Google Scholar
  25. 25.
    Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled circuits and succinct functional encryption. In: Symposium on Theory of Computing Conference, STOC, pp. 555–564 (2013)Google Scholar
  26. 26.
    Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. J. Cryptol. 27(3), 480–505 (2014). (In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Heidelberg (2007))MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Li, B., Micciancio, D.: Equational security proofs of oblivious transfer protocols. IACR Cryptology ePrint Archive 2016, 624 (2016). http://eprint.iacr.org/2016/624
  28. 28.
    Malkin, T., Micciancio, D., Miner, S.K.: Efficient generic forward-secure signatures with an unbounded number of time periods. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 400–417. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  29. 29.
    Micciancio, D., Tessaro, S.: An equational approach to secure multi-party computation. In: Innovations in Theoretical Computer Science, ITCS 2013, pp. 355–372. ACM, New York (2013)Google Scholar
  30. 30.
    O’Neill, A.: Definitional issues in functional encryption. IACR Cryptology ePrint Archive 2010, 556 (2010). http://eprint.iacr.org/2010/556
  31. 31.
    Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  32. 32.
    Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: Symposium on Theory of Computing, STOC, pp. 475–484 (2014)Google Scholar
  33. 33.
    Waters, B.: Functional encryption: origins and recent developments. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 51–54. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  34. 34.
    Waters, B.: A punctured programming approach to adaptively secure functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 678–697. Springer, Heidelberg (2015)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2016

Authors and Affiliations

  1. 1.University of CaliforniaSan DiegoUSA

Personalised recommendations