Multiple-Source Approximation Systems, Evolving Information Systems and Corresponding Logics: A Study in Rough Set Theory

Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10020)

Abstract

Mathematical logic is used as a tool/language to reason about any kind of data. With the inception of rough set theory (RST), the question of a suitable logic for RST has attracted the attention of many researchers. One of the main contribution of the current article is the development of a logic that can describe aspects of information system such as attribute, attribute-values, as well as the induced concept approximations. Moreover, the current article relates RST to some important issues in artificial intelligence such as multiple-source (agent) knowledge-bases, temporal evolution of knowledge-bases, and information updates. For the multiple-source case, we explored counterparts of standard rough set-theoretic concepts such as concept approximations, definability of concepts, as well as corresponding logics that can express these notions. For the temporal situation, we proposed temporal logics for RST that bring temporal and approximation operators together, to enable reasoning about concept approximations relative to time. An update logic for RST is also introduced that can be used to study flow of information and its effect on concept approximations.

Keywords

Approximation spaces Information systems Rough sets First-order logic Modal logic Temporal logic Dynamic epistemic logic Tableau-based proof procedure Combination of modal logics Boolean algebra with operators 

Notes

Acknowledgements

I would like to thank Prof. Mohua Banerjee, my thesis supervisor, for her many suggestions and constant support during this research. In every sense, this thesis would have never been finished without her support.

References

  1. 1.
    Balbiani, P.: Axiomatization of logics based on Kripke models with relative accessibility relations. In: Orłowska, E. (ed.) Incomplete Information: Rough Set Analysis, pp. 553–578. Physica Verlag, Heidelberg, New York (1998)CrossRefGoogle Scholar
  2. 2.
    Balbiani, P., Orłowska, E.: A hierarchy of modal logics with relative accessibility relations. J. Appl. Non-Class. Logics 9(2–3), 303–328 (1999)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Baldoni, M., Giordano, L., Martelli, A.: A tableau calculus for multimodal logics and some (un)decidability results. In: de Swart, H. (ed.) Proceedings of TABLEAUX 1998. LNAI, vol. 1397, pp. 44–59. Springer, Heidelberg (1998)Google Scholar
  4. 4.
    Baltag, A., Moss, S., Solecki, S.: The logic of public announcements, common knowledge, and private suspicions. Technical report SEN-R9922, CWI, Amsterdam (1999)Google Scholar
  5. 5.
    Banerjee, M., Chakraborty, M.K.: Rough consequence, rough algebra. In: Ziarko, W.P. (ed.) RSKD 1993. WC, pp. 196–207. Springer, London (1994)CrossRefGoogle Scholar
  6. 6.
    Banerjee, M., Khan, M.A.: Propositional logics from rough set theory. In: Peters, J.F., Skowron, A., Düntsch, I., Grzymała-Busse, J.W., Orłowska, E., Polkowski, L. (eds.) Transactions on Rough Sets VI. LNCS, vol. 4374, pp. 1–25. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Banerjee, M., Khan, M.A.: Rough set theory: a temporal logic view. In: Chakraborty, M.K., Löwe, B., Mitra, M.N., Sarukkai, S. (eds.) Studies in Logic. Proceedings of Logic, Navya-Nyāya and Applications: Homage to Bimal Krishna Matilal, Kolkata, India, vol. 15, pp. 1–20. College Publications, London (2008). An earlier version of this paper was presented and published in the pre-proceedings of the conference, January 2007Google Scholar
  8. 8.
    Bennett, B., Dixon, C., Fisher, M., Hustadt, U., Franconi, E., de Rijke, M.: Combinations of modal logics. Artif. Intell. Rev. 17(1), 1–20 (2002)MATHCrossRefGoogle Scholar
  9. 9.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)MATHCrossRefGoogle Scholar
  10. 10.
    Bonanno, G.: Axiomatic characterization of the AGM theory of belief revision in a temporal logic. Artif. Intell. 171, 144–160 (2007)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Bonanno, G.: A sound and complete temporal logic for belief revision. In: Dégremont, C., Keiff, L., Rückert, H. (eds.) Dialogues, Logics and Other Strange Things: Essays in Honour of Shahid Rahman, pp. 67–80. College Publications, London (2008)Google Scholar
  12. 12.
    Bull, R.A.: On modal logic with propositional quantifiers. J. Symb. Log. 34(2), 257–263 (1969)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Cerrito, S., Mayer, M.C., Praud, S.: First order linear temporal logic over finite time structures. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS (LNAI), vol. 1705, pp. 62–76. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Chang, C.C., Keisler, H.J.: Model Theory. Elsevier Science Publications B.V., Amsterdam (1992)MATHGoogle Scholar
  15. 15.
    Chellas, B.F.: Modal Logic. Cambridge University Press, Cambridge (1980)MATHCrossRefGoogle Scholar
  16. 16.
    Chen, H., Li, T., Qiao, S., Ruan, D.: A rough set based dynamic maintenance approach for approximations in coarsening and refining attribute values. Int. J. Intell. Syst. 25, 1005–1026 (2010)MATHCrossRefGoogle Scholar
  17. 17.
    David, C.: Temporal dynamics in information tables. Fundamenta Informaticae 115(1), 57–74 (2012)MathSciNetMATHGoogle Scholar
  18. 18.
    Demri, S., Orłowska, E.: Incomplete Information: Structure, Inference, Complexity. Springer, Heidelberg (2002)MATHCrossRefGoogle Scholar
  19. 19.
    Deng, D., Huang, H.-K.: Dynamic reduction based on rough sets in incomplete decision systems. In: Yao, J.T., Lingras, P., Wu, W.-Z., Szczuka, M.S., Cercone, N.J., Ślȩzak, D. (eds.) RSKT 2007. LNCS (LNAI), vol. 4481, pp. 76–83. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Dixon, C., Fisher, M.: Tableaux for temporal logics of knowledge: synchronous systems of perfect recall or no learning. In: Proceedings of Tenth International Symposium on Temporal Representation and Reasoning and the Fourth International Conference on Temporal Logic (TIME-ICTL 2003), pp. 62–71. IEEE Computer Society Press (2003)Google Scholar
  21. 21.
    Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. Int. J. Gen. Syst. 17, 191–200 (1990)MATHCrossRefGoogle Scholar
  22. 22.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. The MIT Press, Cambridge (1995)MATHGoogle Scholar
  23. 23.
    Fagin, R., Halpern, J.Y., Vardi, M.Y.: What can machines know? On the properties of knowledge in distributed systems. J. ACM 39, 328–376 (1992)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Fan, T.F., Hu, W.C., Liau, C.J.: Decision logics for knowledge representation in data mining. In: COMPSAC 2001: Proceedings of the 25th International Computer Software and Applications Conference on Invigorating Software Development, p. 626. IEEE Computer Society, Washington, DC (2001)Google Scholar
  25. 25.
    Fan, T.-F., Liu, D.-R., Tzeng, G.-H.: Arrow decision logic. In: Ślęzak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 651–659. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Farinas Del Cerro, L., Orłowska, E.: DAL – a logic for data analysis. Theoret. Comput. Sci. 36, 251–264 (1997)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Finger, M., Gabbay, D.M.: Adding a temporal dimension to a logic system. J. Log. Lang. Inf. 1, 203–233 (1992)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Fitting, M.: Proof Methods for Modal and Intuitionistic Logics. D. Reidel Publishing Co., Dordrecht (1983)MATHCrossRefGoogle Scholar
  29. 29.
    Gabbay, D.M., Shehtman, V.B.: Product of modal logics, part 1. Log. J. IGPL 6(1), 73–146 (1998)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Gargov, G.: Two completeness theorems in the logic for data analysis. Technical report 581, Institute of Computer Science, Polish Academy of Sciences, Warsaw (1986)Google Scholar
  31. 31.
    Gerbrandy, J.: Bisimulations on planet Kripke. Ph.D. thesis, ILLC, University of Amsterdam (1999)Google Scholar
  32. 32.
    Governatori, G.: Labelled tableaux for multi-modal logics. In: Baumgartner, P., Hähnle, R., Posegga, J. (eds.) TABLEAUX 1995. LNCS (LNAI), vol. 918, pp. 79–94. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  33. 33.
    Grzymała-Busse, J.W., Rzasa, W.: Local, global approximations for incomplete data. Trans. Rough Sets VIII, 21–34 (2008)MathSciNetMATHGoogle Scholar
  34. 34.
    Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed environment. J. ACM 37(3), 549–587 (1990)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Halpern, J.Y., van der Meyden, R., Vardi, M.Y.: Complete axiomatizations for reasoning about knowledge and time. SIAM J. Comput. 33(3), 674–703 (2004)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    He, X., Xu, L., Shen, W.: Dynamic information system and its rough set model based on time sequence. In: Proceedings of the IEEE International Conference on Granular Computing, pp. 542–545, May 2006Google Scholar
  37. 37.
    Hodkinson, I.: Monodic packed fragment with equality is decidable. Stud. Logica 72(2), 185–197 (2002)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Hodkinson, I., Kontchakov, R., Kurucz, A., Wolter, F., Zakharyaschev, M.: On the computational complexity of decidable fragments of first-order linear temporal logics. In: TIME 2003, Proceedings of the 10th International Symposium on Temporal Representation and Reasoning, pp. 91–98 (2003)Google Scholar
  39. 39.
    Hodkinson, I., Wolter, F., Zakharyaschev, M.: Decidable fragments of first-order temporal logics. Ann. Pure Appl. Logic 106(1–3), 85–134 (2000)MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Hughes, G.E., Cresswell, M.J.: A New Introduction to Modal Logic. Routledge, London (1996)MATHCrossRefGoogle Scholar
  41. 41.
    Jerzy, B., Słowiński, R.: Incremental induction of decision rules from dominance-based rough approximations. Electron. Notes Theor. Comput. Sci. 82, 40–51 (2003)MATHCrossRefGoogle Scholar
  42. 42.
    Khan, M.A.: Multiple-source approximation systems, evolving information systems and corresponding logics: a study in rough set theory. Ph.D. thesis, Indian Institute of Technology Kanpur (2010)Google Scholar
  43. 43.
    Khan, M.A.: A modal logic for non-deterministic information systems. In: Banerjee, M., Krishna, S.N. (eds.) ICLA 2015. LNCS, vol. 8923, pp. 119–131. Springer, Heidelberg (2015)Google Scholar
  44. 44.
    Khan, M.A.: A probabilistic approach to information system and rough set theory. In: Chakraborty, M.K., Skowron, A., Maiti, M., Kar, S. (eds.) Facets of Uncertainties and Applications. Springer Proceedings in Mathematics and Statistics, vol. 125, pp. 113–123. Springer, Heidelberg (2015). (chapter 9)CrossRefGoogle Scholar
  45. 45.
    Khan, M.A., Banerjee, M.: Formal reasoning with rough sets in multiple-source approximation systems. Int. J. Approx. Reason. 49(2), 466–477 (2008)MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Khan, M.A., Banerjee, M.: Multiple-source approximation systems: membership functions and indiscernibility. In: Wang, G., Li, T., Grzymala-Busse, J.W., Miao, D., Skowron, A., Yao, Y. (eds.) RSKT 2008. LNCS (LNAI), vol. 5009, pp. 80–87. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  47. 47.
    Khan, M.A., Banerjee, M.: An algebraic semantics for the logic of multiple-source approximation systems. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds.) RSFDGrC 2009. LNCS, vol. 5908, pp. 69–76. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  48. 48.
    Khan, M.A., Banerjee, M.: A dynamic logic for multi-agent partial knowledge information systems. In: Proceedings of the Workshop on Logical Methods for Social Concepts (LMSC 2009) at ESSLLI 2009, Bordeaux, France (2009). http://www.irit.fr/Andreas.Herzig/Esslli09/
  49. 49.
    Khan, M.A., Banerjee, M.: A logic for complete information systems. In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS, vol. 5590, pp. 829–840. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  50. 50.
    Khan, M.A., Banerjee, M.: A preference-based multiple-source rough set model. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS, vol. 6086, pp. 247–256. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  51. 51.
    Khan, M.A., Banerjee, M.: A study of multiple-source approximation systems. In: Peters, J.F., Skowron, A., Słowiński, R., Lingras, P., Miao, D., Tsumoto, S. (eds.) Transactions on Rough Sets XII. LNCS, vol. 6190, pp. 46–75. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  52. 52.
    Khan, M.A., Banerjee, M.: A logic for multiple-source approximation systems with distributed knowledge base. J. Philos. Log. 40(5), 663–692 (2011)MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Khan, M.A., Banerjee, M.: Logics for information systems and their dynamic extensions. ACM Trans. Comput. Log. 12(4), 29 (2011)MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    Khan, M.A., Banerjee, M.: Logics for some dynamic spaces-I. J. Log. Comput. 25(3), 827–856 (2015)MathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    Khan, M.A., Banerjee, M.: Logics for some dynamic spaces-II. J. Log. Comput. 25(3), 857–878 (2015)MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    Khan, M.A., Banerjee, M., Rieke, R.: An update logic for information systems. Int. J. Approx. Reason. 55, 436–456 (2014)MathSciNetMATHCrossRefGoogle Scholar
  57. 57.
    Khan, M.A., Ma, M.: A modal logic for multiple-source tolerance approximation spaces. In: Banerjee, M., Seth, A. (eds.) Logic and Its Applications. LNCS, vol. 6521, pp. 124–136. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  58. 58.
    Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A.: Rough sets: a tutorial. In: Pal, S.K., Skowron, A. (eds.) Rough Fuzzy Hybridization: A New Trend in Decision-Making, pp. 3–98. Springer, Singapore (1999)Google Scholar
  59. 59.
    Kripke, S.A.: A completeness theorem in modal logic. J. Symb. Log. 24(1), 1–14 (1959)MathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    Kryszkiewicz, M.: Rough set approach to incomplete information systems. Inf. Sci. 112, 39–49 (1998)MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    Kryszkiewicz, M.: Rules in incomplete information systems. Inf. Sci. 113, 271–292 (1999)MathSciNetMATHCrossRefGoogle Scholar
  62. 62.
    Ladner, R., Reif, J.: The logic of distributed protocols. In: Halpern, J.Y. (ed.) Proceedings of the 1986 Conference on Theoretical Aspects of Reasoning About Knowledge, pp. 207–222. Morgan Kaufmann Publishers Inc., San Francisco (1986)Google Scholar
  63. 63.
    Lehmann, D.J.: Knowledge, common knowledge and related puzzles (extended summary). In: PODC 1984: Proceedings of the Third Annual ACM Symposium on Principles of Distributed Computing, pp. 62–67. ACM, New York (1984)Google Scholar
  64. 64.
    Liang, J.Y., Wang, F., Dang, C.Y., Qian, Y.H.: An efficient rough feature selsction algorithm with a multi-granulation view. Int. J. Approx. Reason. 53(7), 1080–1093 (2012)MathSciNetCrossRefGoogle Scholar
  65. 65.
    Liau, C.J.: An overview of rough set semantics for modal and quantifier logics. Intl. J. Uncertain. Fuzziness Knowl.-Based Syst. 8(1), 93–118 (2000)MathSciNetMATHCrossRefGoogle Scholar
  66. 66.
    Lin, G.P., Liang, Y.H., Qian, J.Y.: Multigranulation rough sets: from partition to covering. Inf. Sci. 241, 101–118 (2013)MathSciNetMATHCrossRefGoogle Scholar
  67. 67.
    Lin, G.P., Qian, Y.H., Li, J.J.: NMGRS: neighborhood-based multigranulation rough sets. Int. J. Approx. Reason. 53(7), 1080–1093 (2012)MathSciNetMATHCrossRefGoogle Scholar
  68. 68.
    Lin, T.Y., Yao, Y.Y.: Neighborhoods system: measure, probability and belief functions. In: Proceedings of the 4th International Workshop on Rough Sets and Fuzzy Sets and Machine Discovery, pp. 202–207, November 1996Google Scholar
  69. 69.
    Liu, D., Li, T., Zhang, J.: A rough set-based incremental approach for learning knowledge in dynamic incomplete information systems. Int. J. Approx. Reason. 55, 1764–1786 (2014)MathSciNetMATHCrossRefGoogle Scholar
  70. 70.
    Liu, D., Li, T.R., Ruan, D., Zou, W.L.: An incremental approach for inducing knowledge from dynamic information systems. Fundamenta Informaticae 94(2), 245–260 (2009)MathSciNetMATHGoogle Scholar
  71. 71.
    Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems Specification. Springer, Heidelberg (1991)MATHGoogle Scholar
  72. 72.
    Margaris, A.: First Order Mathematical Logic. Blaisdell Publishing Company, London (1966)MATHGoogle Scholar
  73. 73.
    Massacci, F.: Single step tableaux for modal logics. J. Autom. Reason. 24, 319–364 (2000)MathSciNetMATHCrossRefGoogle Scholar
  74. 74.
    Murakami, Y.: Modal logic of partitions. Ph.D. thesis, University Graduate School, Indiana University (2005)Google Scholar
  75. 75.
    Orłowska, E.: Dynamic information system. Fundamenta Informaticae 5, 101–118 (1982)MathSciNetMATHGoogle Scholar
  76. 76.
    Orłowska, E.: Logic of indiscernibility relations. In: Goos, G., Hartmanis, J. (eds.) Computation Theory. LNCS, vol. 208, pp. 177–186. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  77. 77.
    Orłowska, E.: Logic of nondeterministic information. Stud. Logica 1, 91–100 (1985)MathSciNetMATHCrossRefGoogle Scholar
  78. 78.
    Orłowska, E.: Kripke semantics for knowledge representation logics. Studia Logica XLIX, 255–272 (1990)MathSciNetMATHCrossRefGoogle Scholar
  79. 79.
    Orłowska, E.: Many-valuedness and uncertainty. Intl. J. Mult. Valued Log. 4, 207–277 (1999)MathSciNetMATHGoogle Scholar
  80. 80.
    Orłowska, E., Pawlak, Z.: Expressive power of knowledge representation systems. Int. J. Man Mach. Stud. 20(5), 485–500 (1984)MATHCrossRefGoogle Scholar
  81. 81.
    Orłowska, E., Pawlak, Z.: Representation of nondeterministic information. Theoret. Comput. Sci. 29, 27–39 (1984)MathSciNetMATHCrossRefGoogle Scholar
  82. 82.
    Pagliani, P.: Pretopologies and dynamic spaces. Fundamenta Informaticae 59(2–3), 221–239 (2004)MathSciNetMATHGoogle Scholar
  83. 83.
    Pawlak, Z.: Rough sets. Intl. J. Comput. Inf. Sci. 11(5), 341–356 (1982)MathSciNetMATHCrossRefGoogle Scholar
  84. 84.
    Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers, Dordrecht (1991)MATHGoogle Scholar
  85. 85.
    Pomykała, J.A.: Approximation, similarity and rough constructions. ILLC prepublication series for computation and complexity theory CT-93-07, University of Amsterdam (1993)Google Scholar
  86. 86.
    Qian, Y.H., Liang, J.Y., Yao, Y.Y., Dang, C.Y.: Incomplete multigranulation rough set. IEEE Trans. Syst. Man Cybern. Part A 40(2), 420–431 (2010)CrossRefGoogle Scholar
  87. 87.
    Qian, Y.H., Liang, J.Y., Yao, Y.Y., Dang, C.Y.: MGRS: a multi-granulation rough set. Inf. Sci. 180, 949–970 (2010)MathSciNetMATHCrossRefGoogle Scholar
  88. 88.
    Qian, Y.H., Zhang, H., Sang, Y.L., Liang, J.Y.: Multigranulation decision-theoretic rough sets. Int. J. Approx. Reason. 55(1), 225–237 (2014)MathSciNetMATHCrossRefGoogle Scholar
  89. 89.
    Rasiowa, H.: An Algebraic Approach to Non-classical Logics. North-Holland Publishing Company, Amsterdam (1974)MATHGoogle Scholar
  90. 90.
    Rasiowa, H., Marek, W.: On reaching consensus by groups of intelligent agents. In: Ras, Z.W. (ed.), Proceedings of the International Symposium on Methodologies, Intelligent Systems ISMIS 1989, Charlotte, NC, pp. 234–243. North-Holland, New York (1989)Google Scholar
  91. 91.
    Rasiowa, H., Sikorski, R.: A proof of the completeness theorem of godel. Fundamenta Informaticae 37, 193–203 (1950)MathSciNetMATHGoogle Scholar
  92. 92.
    Rauszer, C.M.: Rough logic for multiagent systems. In: Masuch, M., Polos, L. (eds.) Knowledge Representation and Reasoning Under Uncertainty. LNCS, vol. 808, pp. 161–181. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  93. 93.
    Shan, N., Ziarko, W.: Data-based acquisition and incremental modification of classification rules. Comput. Intell. 11, 357–370 (1995)CrossRefGoogle Scholar
  94. 94.
    She, Y.H., He, X.L.: On the structure of the multigranulation rough set model. Knowl.-Based Syst. 36, 81–92 (2012)CrossRefGoogle Scholar
  95. 95.
    Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27, 245–253 (1996)MathSciNetMATHGoogle Scholar
  96. 96.
    Ślȩzak, D., Ziarko, W.: The investigation of the Bayesian rough set model. Int. J. Approx. Reason. 40, 81–91 (2005)MathSciNetMATHCrossRefGoogle Scholar
  97. 97.
    Stefanowski, J., Tsoukiàs, A.: On the extension of rough sets under incomplete information. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 73–82. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  98. 98.
    Tanaka, Y., Ono, H.: Rasiowa-Sikorski lemma and Kripke completeness of predicate and infinitary modal logics. In: Zakharyaschev, Z., Segerberg, K., de Rijke, M., Wansing, H. (eds.) Advances in Modal Logic, vol. 2, pp. 401–419. CSLI Publications, Stanford (2001)Google Scholar
  99. 99.
    Tong, L., An, L.: Incremental learning of decision rules based on rough set theory. In: IWCICA 2002: Proceedings of the 4th World Congress on Intelligent Control and Automation, pp. 420–425 (2002)Google Scholar
  100. 100.
    Vakarelov, D.: Abstract characterization of some knowledge representation systems and the logic NIL of nondeterministic information. In: Jorrand, P., Sgurev, V. (eds.) Artificial Intelligence II, pp. 255–260. North-Holland, Amsterdam (1987)Google Scholar
  101. 101.
    Vakarelov, D.: Modal logics for knowledge representation systems. Theoret. Comput. Sci. 90, 433–456 (1991)MathSciNetMATHGoogle Scholar
  102. 102.
    van der Hoek, W., Meyer, J.J.: Making some issues of implicit knowledge explicit. Found. Comput. Sci. 3, 193–223 (1992)MathSciNetMATHCrossRefGoogle Scholar
  103. 103.
    van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic epistemic logic with assignment. In: Dignum, F., Dignum, V., Koenig, S., Kraus, S., Singh, M., Wooldridge, M. (eds.) AAMAS 2005: Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 141–148. ACM, New York (2005)Google Scholar
  104. 104.
    van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Springer, Berlin (2007)MATHCrossRefGoogle Scholar
  105. 105.
    Wojna, A.: Constraint based incremental learning of classification rules. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, p. 428. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  106. 106.
    Wooldridge, M., Dixon, C., Fisher, M.: A tableau-based proof method for temporal logics of knowledge and belief. J. Appl. Non-Class. Log. 8(3), 225–258 (1998)MathSciNetMATHCrossRefGoogle Scholar
  107. 107.
    Wu, W.Z., Leung, Y.: Theory and applications of granular labeled partitions in multi-scale decision tables. Inf. Sci. 181, 3878–3897 (2011)MATHCrossRefGoogle Scholar
  108. 108.
    Xu, W.H., Wang, Q.R., Zhang, X.T.: Multi-granulation fuzzy rough sets in a fuzzy tolerance approximation space. Int. J. Fuzzy Syst. 13(4), 246–259 (2011)MathSciNetGoogle Scholar
  109. 109.
    Yang, X.B., Qian, Y.H., Yang, J.Y.: Hierarchical structures on multigranulation spaces. J. Comput. Sci. Technol. 27(6), 1169–1183 (2012)MathSciNetMATHCrossRefGoogle Scholar
  110. 110.
    Yao, Y.Y., Liu, Q.: A generalized decision logic in interval-set-valued information tables. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 285–293. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  111. 111.
    Ziarko, W.: Variable precision rough set model. J. Comput. Syst. Sci. 46, 39–59 (1993)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2016

Authors and Affiliations

  1. 1.Discipline of MathematicsIndian Institute of Technology IndoreIndoreIndia
  2. 2.Department of Mathematics and StatisticsIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations