Advertisement

Blutgasanalyse und Sauerstofftherapie

  • Michael Obladen

Zusammenfassung

Obwohl der menschliche Fetus sich bei niedrigem Sauerstoffpartialdruck gut entwickelt, wurde früher nach der Geburt oft Sauerstoff eingesetzt, um die adulte Oxygenierung schnell herbeizuführen. Dieses Vorgehen wird in den letzten Jahren zunehmend kritisiert. Das Kapitel schildert die Blutgasanalyse als Grundpfeiler von Sauerstoffzufuhr und künstlicher Beatmung. Außerdem stellt es die Nebenwirkungen von Sauerstoff dar, insbesondere die Retinopathie des Frühgeborenen.

Literatur

  1. 1.
    Andersen CC, Phelps DL (2000) Peripheral retinal ablation for threshold retinopathy of prematurity in preterm infants. Cochrane Database Syst Rev (2):CD001693Google Scholar
  2. 2.
    Askie LM (2013) Optimal oxygen saturations in preterm infants: a moving target. Curr Opin Pediatr 25(2):188–92Google Scholar
  3. 3.
    Askie LM, Henderson-Smart DJ, Ko H (2009) Restricted versus liberal oxygen exposure for preventing morbidity and mortality in preterm or low birth weight infants. Cochrane Database Syst Rev (1):CD001077Google Scholar
  4. 4.
    Bancalari A, Schade R, Munoz T, Lazcano C, Parada R, Pena R (2016) Oral propranolol in early stages of retinopathy of prematurity. J Perinat Med 44(5):499–503Google Scholar
  5. 5.
    Barrington KJ (2000) Umbilical artery catheters in the newborn: effects of catheter design (end vs side hole). Cochrane Database Syst Rev (2):CD000508Google Scholar
  6. 6.
    Barrington KJ (2000) Umbilical artery catheters in the newborn: effects of heparin. Cochrane Database Syst Rev (2):CD000507Google Scholar
  7. 7.
    Barrington KJ (2000) Umbilical artery catheters in the newborn: effects of position of the catheter tip. Cochrane Database Syst Rev (2):CD000505Google Scholar
  8. 8.
    Campbell JP, Ryan MC, Lore E et al. (2016) Diagnostic Discrepancies in Retinopathy of Prematurity Classification. Ophthalmology 123(8):1795–801Google Scholar
  9. 9.
    Carlo WA, Finer NN, Walsh MC et al. (2010) Target ranges of oxygen saturation in extremely preterm infants. N Engl J Med 362(21):1959–69Google Scholar
  10. 10.
    Chow LC, Wright KW, Sola A (2003) Can changes in clinical practice decrease the incidence of severe retinopathy of prematurity in very low birth weight infants? Pediatrics 111(2):339–45Google Scholar
  11. 11.
    Darlow BA, Graham PJ (2007) Vitamin A supplementation to prevent mortality and short and long-term morbidity in very low birthweight infants. Cochrane Database Syst Rev (4):CD000501Google Scholar
  12. 12.
    Dunn PM (1966) Localization of the umbilical catheter by post-mortem measurement. Arch Dis Child 41(215):69-75Google Scholar
  13. 13.
    Filippi L, Cavallaro G, Bagnoli P et al. (2013) Oral propranolol for retinopathy of prematurity: risks, safety concerns, and perspectives. J Pediatr 163(6):1570–7.e6Google Scholar
  14. 14.
    Geloneck MM, Chuang AZ, Clark WL et al. (2014) Refractive outcomes following bevacizumab monotherapy compared with conventional laser treatment: a randomized clinical trial. JAMA Ophthalmol 132(11):1327–33Google Scholar
  15. 15.
    Gillies D, Wells D, Bhandari AP (2012) Positioning for acute respiratory distress in hospitalised infants and children. Cochrane Database Syst Rev 7:CD003645Google Scholar
  16. 16.
    Hafferl A (1957) Lehrbuch der topographischen Anatomie. Springer, Berlin Heidelberg New YorkGoogle Scholar
  17. 17.
    International Committee for the Classification of Retinopathy of Prematurity (2005) The International Classification of Retinopathy of Prematurity revisited. Arch Ophthalmol 123(7):991–9Google Scholar
  18. 18.
    Jorge EC, Jorge EN, El Dib RP (2013) Early light reduction for preventing retinopathy of prematurity in very low birth weight infants. Cochrane Database Syst Rev 6(8):CD 000122Google Scholar
  19. 19.
    Kecskes ZB, Davies MW (2002) Rapid correction of early metabolic acidaemia in comparison with placebo, no intervention or slow correction in LBW infants. Cochrane Database Syst Rev (1):CD002976Google Scholar
  20. 20.
    Lawn CJ, Weir FJ, McGuire W (2005) Base administration or fluid bolus for preventing morbidity and mortality in preterm infants with metabolic acidosis. Cochrane Database Syst Rev (2):CD003215Google Scholar
  21. 21.
    Lloyd J, Askie L, Smith J, Tarnow-Mordi W (2003) Supplemental oxygen for the treatment of prethreshold retinopathy of prematurity. Cochrane Database Syst Rev (2):CD003482Google Scholar
  22. 22.
    Makhoul IR, Peleg O, Miller B et al. (2013) Oral propranolol versus placebo for retinopathy of prematurity: a pilot, randomised, double-blind prospective study. Arch Dis Child 98(7):565-7Google Scholar
  23. 23.
    Manja V, Lakshminrusimha S, Cook DJ (2015) Oxygen saturation target range for extremely preterm infants: a systematic review and meta-analysis. JAMA Pediatr 169(4):332–40Google Scholar
  24. 24.
    Mintz-Hittner HA, Kennedy KA, Chuang AZ (2011) Efficacy of intravitreal bevacizumab for stage 3+ retinopathy of prematurity. N Engl J Med 364(7):603–15Google Scholar
  25. 25.
    Qureshi MJ, Kumar M (2013) D-Penicillamine for preventing retinopathy of prematurity in preterm infants. Cochrane Database Syst Rev 9:CD001073Google Scholar
  26. 26.
    Schmidt B, Whyte RK, Asztalos EV et al. (2013) Effects of targeting higher vs lower arterial oxygen saturations on death or disability in extremely preterm infants: a randomized clinical trial. JAMA 309(20):2111–20Google Scholar
  27. 27.
    Stenson BJ, Tarnow-Mordi WO, Darlow BA et al. (2013) Oxygen saturation and outcomes in preterm infants. N Engl J Med 368(22):2094-104Google Scholar
  28. 28.
    Subhani M, Combs A, Weber P, Gerontis C, DeCristofaro JD (2001) Screening guidelines for retinopathy of prematurity: the need for revision in extremely low birth weight infants. Pediatrics 107(4):656–9Google Scholar
  29. 29.
    Tarnow-Mordi W, Stenson B, Kirby A et al. (2016) Outcomes of Two Trials of Oxygen-Saturation Targets in Preterm Infants. N Engl J Med 374(8):749–60Google Scholar
  30. 30.
    Tingay DG, Stewart MJ, Morley CJ (2005) Monitoring of end tidal carbon dioxide and transcutaneous carbon dioxide during neonatal transport. Arch Dis Child Fetal Neonatal Ed 90(6):F523–6Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  • Michael Obladen
    • 1
  1. 1.Klinik für NeonatologieBerlin

Personalised recommendations