Sequence Hypergraphs

  • Kateřina Böhmová
  • Jérémie Chalopin
  • Matúš Mihalák
  • Guido Proietti
  • Peter Widmayer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9941)


We introduce sequence hypergraphs by extending the concept of a directed edge (from simple directed graphs) to hypergraphs. Specifically, every hyperedge of a sequence hypergraph is defined as a sequence of vertices (imagine it as a directed path). Note that this differs substantially from the standard definition of directed hypergraphs. Sequence hypergraphs are motivated by problems in public transportation networks, as they conveniently represent transportation lines. We study the complexity of some classic algorithmic problems, arising (not only) in transportation, in the setting of sequence hypergraphs. In particular, we consider the problem of finding a shortest st-hyperpath: a minimum set of hyperedges that “connects” (allows to travel to) t from s; finding a minimum st-hypercut: a minimum set of hyperedges whose removal “disconnects” t from s; or finding a maximum st-hyperflow: a maximum number of hyperedge-disjoint st-hyperpaths.

We show that many of these problems are APX-hard, even in acyclic sequence hypergraphs or with hyperedges of constant length. However, if all the hyperedges are of length at most 2, we show, these problems become polynomially solvable. We also study the special setting in which for every hyperedge there also is a hyperedge with the same sequence, but in the reverse order. Finally, we briefly discuss other algorithmic problems (e.g., finding a minimum spanning tree, or connected components).


Colored graphs Labeled problems Oriented hypergraphs Algorithms Complexity 


  1. 1.
    Ausiello, G., Franciosa, P.G., Frigioni, D.: Directed hypergraphs: problems, algorithmic results, and a novel decremental approach. In: Restivo, A., Ronchi Della Rocca, S., Roversi, L. (eds.) ICTCS 2001. LNCS, vol. 2202, p. 312. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Ausiello, G., Giaccio, R., Italiano, G.F., Nanni, U.: Optimal traversal of directed hypergraphs. Technical report (1992)Google Scholar
  3. 3.
    Barbut, E., Bialostocki, A.: A generalization of rotational tournaments. Discrete Math. 76(2), 81–87 (1989)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Berry, J., Dean, N., Goldberg, M., Shannon, G., Skiena, S.: Graph drawing and manipulation with link. In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 425–437. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  5. 5.
    Böhmová, K., Mihalák, M., Pröger, T., Sacomoto, G., Sagot, M.-F.: Computing and listing st-paths in public transportation networks. In: Kulikov, A.S., Woeginger, G.J. (eds.) CSR 2016. LNCS, vol. 9691, pp. 102–116. Springer, Heidelberg (2016). doi:10.1007/978-3-319-34171-2_8 Google Scholar
  6. 6.
    Broersma, H., Li, X., Woeginger, G., Zhang, S.: Paths and cycles in colored graphs. Australas. J. Comb. 31, 299–311 (2005)MathSciNetMATHGoogle Scholar
  7. 7.
    Carr, R.D., Doddi, S., Konjevod, G., Marathe, M.V.: On the red-blue set cover problem. In: SODA 2000. vol. 9, pp. 345–353. Citeseer (2000)Google Scholar
  8. 8.
    Coudert, D., Datta, P., Pérennes, S., Rivano, H., Voge, M.E.: Shared risk resource group complexity and approximability issues. Parallel Process. Lett. 17(02), 169–184 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Coudert, D., Pérennes, S., Rivano, H., Voge, M.E.: Combinatorial optimization in networks with Shared Risk Link Groups. Research report, INRIA, October 2015Google Scholar
  10. 10.
    Elias, P., Feinstein, A., Shannon, C.E.: A note on the maximum flow through a network. IRE Trans. Inf. Theor. 2(4), 117–119 (1956)CrossRefGoogle Scholar
  11. 11.
    Erdős, P.L., Frankl, P., Katona, G.O.: Intersecting sperner families and their convex hulls. Combinatorica 4(1), 21–34 (1984)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Fellows, M.R., Guo, J., Kanj, I.A.: The parameterized complexity of some minimum label problems. In: Paul, C., Habib, M. (eds.) WG 2009. LNCS, vol. 5911, pp. 88–99. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Gallo, G., Longo, G., Pallottino, S., Nguyen, S.: Directed hypergraphs and applications. Discrete Appl. Math. 42(2), 177–201 (1993)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman & Co., New York (1979)MATHGoogle Scholar
  15. 15.
    Goldberg, P.W., McCabe, A.: Shortest paths with bundles and non-additive weights is hard. In: Spirakis, P.G., Serna, M. (eds.) CIAC 2013. LNCS, vol. 7878, pp. 264–275. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Gutin, G., Yeo, A.: Hamiltonian paths and cycles in hypertournaments. J. Graph Theor. 25(4), 277–286 (1997)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Hassin, R., Monnot, J., Segev, D.: Approximation algorithms and hardness results for labeled connectivity problems. J. Comb. Opt. 14(4), 437–453 (2007)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Hu, J.Q.: Diverse routing in optical mesh networks. IEEE Trans. Commun. 51(3), 489–494 (2003)CrossRefGoogle Scholar
  19. 19.
    Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2-epsilon. J. Comput. Syst. Sci. 74(3), 335–349 (2008)CrossRefMATHGoogle Scholar
  20. 20.
    Krumke, S.O., Wirth, H.C.: On the minimum label spanning tree problem. Inf. Process. Lett. 66(2), 81–85 (1998)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Wachman, G., Khardon, R.: Learning from interpretations: a rooted kernel for ordered hypergraphs. In: Proceedings of the 24th International Conference on Machine Learning, pp. 943–950. ACM (2007)Google Scholar
  22. 22.
    Yuan, S., Varma, S., Jue, J.P.: Minimum-color path problems for reliability in mesh networks. In: INFOCOM 2005, vol. 4, pp. 2658–2669. IEEE (2005)Google Scholar
  23. 23.
    Zhang, P., Cai, J.Y., Tang, L.Q., Zhao, W.B.: Approximation and hardness results for label cut and related problems. J. Comb. Opt. 21(2), 192–208 (2011)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2016

Authors and Affiliations

  • Kateřina Böhmová
    • 1
  • Jérémie Chalopin
    • 2
  • Matúš Mihalák
    • 1
    • 3
  • Guido Proietti
    • 4
    • 5
  • Peter Widmayer
    • 1
  1. 1.Institute of Theoretical Computer ScienceETH ZürichZürichSwitzerland
  2. 2.LIF, CNRS & Aix-Marseille UniversityMarseilleFrance
  3. 3.Department of Knowledge EngineeringMaastricht UniversityMaastrichtThe Netherlands
  4. 4.DISIM, Università degli Studi dell’AquilaL’AquilaItaly
  5. 5.IASI, CNRRomaItaly

Personalised recommendations