Exhaustive Generation of k-Critical \({\mathcal H}\)-Free Graphs

  • Jan GoedgebeurEmail author
  • Oliver Schaudt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9941)


We describe an algorithm for generating all k-critical \({\mathcal H}\)-free graphs, based on a method of Hoàng et al. Using this algorithm, we prove that there are only finitely many 4-critical \((P_7,C_k)\)-free graphs, for both \(k=4\) and \(k=5\). We also show that there are only finitely many 4-critical \((P_8,C_4)\)-free graphs. For each case of these cases we also give the complete lists of critical graphs and vertex-critical graphs. These results generalize previous work by Hell and Huang, and yield certifying algorithms for the 3-colorability problem in the respective classes.

Moreover, we prove that for every t, the class of 4-critical planar \(P_t\)-free graphs is finite. We also determine all 52 4-critical planar \(P_7\)-free graphs. We also prove that every \(P_{11}\)-free graph of girth at least five is 3-colorable, and show that this is best possible by determining the smallest 4-chromatic \(P_{12}\)-free graph of girth at least five. Moreover, we show that every \(P_{14}\)-free graph of girth at least six and every \(P_{17}\)-free graph of girth at least seven is 3-colorable. This strengthens results of Golovach et al.


Graph coloring Critical graph H-free graph Graph generation 



Several of the computations for this work were carried out using the Stevin Supercomputer Infrastructure at Ghent University. Jan Goedgebeur is supported by a Postdoctoral Fellowship of the Research Foundation Flanders (FWO).


  1. 1.
    Böhme, T., Mohar, B., Škrekovski, R., Stiebitz, M.: Subdivisions of large complete bipartite graphs and long induced paths in \(k\)-connected graphs. J. Graph Theor. 45, 270–274 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Boyer, J.M., Myrvold, W.J.: On the cutting edge: simplified \(O(n)\) planarity by edge addition. J. Graph Algorithms. Appl. 8(2), 241–273 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brinkmann, G., Coolsaet, K., Goedgebeur, J., Mélot, H.: House of graphs: a database of interesting graphs. Discrete Appl. Math. 161(1–2), 311–314 (2013). MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Brinkmann, G., Meringer, M.: The smallest 4-regular 4-chromatic graphs with girth 5. Graph Theor. Notes New York 32, 40–41 (1997)MathSciNetGoogle Scholar
  5. 5.
    Bruce, D., Hoàng, C.T., Sawada, J.: A certifying algorithm for 3-colorability of P \(_\text{5 }\)-free graphs. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 594–604. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Chudnovsky, M., Goedgebeur, J., Schaudt, O., Zhong, M.: Obstructions for three-coloring graphs with one forbidden induced subgraph. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, 10–12 January 2016, Arlington, VA, USA, pp. 1774–1783 (2016)Google Scholar
  7. 7.
    Emden-Weinert, T., Hougardy, S., Kreuter, B.: Uniquely colourable graphs and the hardness of colouring graphs of large girth. Comb. Probab. Comput. 7(04), 375–386 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Goedgebeur, J.: Homepage of generator for 4-critical \(P_t\)-free graphs.
  9. 9.
    Golovach, P.A., Paulusma, D., Song, J.: Coloring graphs without short cycles and long induced paths. Discrete Appl. Math. 167, 107–120 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hell, P., Huang, S.: Complexity of coloring graphs without paths and cycles. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 538–549. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  11. 11.
    Hoàng, C.T., Moore, B., Recoskie, D., Sawada, J., Vatshelle, M.: Constructions of \(k\)-critical \({P}_5\)-free graphs. Discrete Appl. Math. 182, 91–98 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10(4), 718–720 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kamiński, M., Lozin, V.V.: Coloring edges and vertices of graphs without short or long cycles. Contrib. Discrete Math. 2, 61–66 (2007)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Král’, D., Kratochvíl, J., Tuza, Z., Woeginger, G.J.: Complexity of Coloring Graphs without Forbidden Induced Subgraphs. In: Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 254–262.  Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Leven, D., Galil, Z.: NP completeness of finding the chromatic index of regular graphs. J. Algorithms 4(1), 35–44 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Maffray, F., Morel, G.: On 3-colorable \({P}_5\)-free graphs. SIAM J. Discrete Math. 26, 1682–1708 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    McKay, B.D.: Isomorph-free exhaustive generation. J. Algorithms 26(2), 306–324 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    McKay, B.D., Piperno, A.: Practical graph isomorphism II. J. Symbolic Comput. 60, 94–112 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Randerath, B., Schiermeyer, I.: 3-colorability \(\in \) P for \({P}_6\)-free graphs. Discrete Appl. Math. 136(2), 299–313 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Sumner, D.P.: Subtrees of a graph and the chromatic number. In: Chartrand, G. (ed.) Theory and Applications of Graphs, pp. 557–576. John Wiley, New York (1981)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2016

Authors and Affiliations

  1. 1.Department of Applied Mathematics, Computer Science and StatisticsGhent UniversityGhentBelgium
  2. 2.Institut Für InformatikUniversität Zu KölnCologneGermany

Personalised recommendations