Advertisement

The Existence of Two Variant Processes in Human Declarative Memory: Evidence Using Machine Learning Classification Techniques in Retrieval Tasks

  • Alex FridEmail author
  • Hananel Hazan
  • Ester Koilis
  • Larry M. Manevitz
  • Maayan Merhav
  • Gal Star
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9770)

Abstract

This work use supervised machine learning methods on fMRI brain scans, taken/measured during a memory-retrieval task, to support establishing the existence of two distinct systems for human declarative memory (“Explicit Encoding” (EE) and “Fast Mapping” (FM)). The importance of using retrieval is that it allows a direct comparison between exemplars designed to use EE and those designed to use FM. This is not directly available under acquisition tasks because of the nature of the purported memory systems since the tasks are necessarily somewhat distinct between the two systems under acquisition. This means that there could be a confounding of the distinction in the task with the difference in the representation and mechanism of the internal memory system during analysis. Retrieval tasks, on the other hand allow for identity of task. Thus this work fills a lacuna in earlier work which used memory acquisition tasks. In addition, since the data used in this work was gathered over a two day period, the classification methods is also able to identify a distinction in the consolidation of the memories in the two systems. The results presented here clearly support the existence of the two distinct memory systems.

Keywords

Machine learning Classification Functional Magnetic Resonance Imaging (fMRI) Feature selection Support vector machines Decision trees Radial basis function kernel Declarative memory Consolidation Semantic memory Informational biomarkers 

Notes

Acknowlegments

Part of this work appears in the M.Sc thesis of Ms. Gal Star at University of Haifa under the supervision of Prof. Larry Manevitz at the Neuro-Computation Laboratory at Caesarea Rothschild Institute (CRI), Haifa, Israel.

The research is based on data gathered by Rotman Research Institute at Baycrest, Toronto, Canada. The examining of this data was suggested by Dr. A. Gilboa and complements the work of Merhav, Karni and Gilboa [16]. The computational analysis of the data was performed at the Neuro-Computation Laboratory at the Caesarea Rothschild Institute at the University of Haifa, Israel under the supervision of Prof. Larry Manevitz. The authors are listed in alphabetical order.

References

  1. 1.
    Squire, L.R.: Declarative and non-declarative memory: multiple brain systems supporting learning and memory. J. Cogn. Neurosci. 4(3), 232–243 (1992)CrossRefGoogle Scholar
  2. 2.
    McClelland, L., McNaughton, B.L., O’Reilly, R.C.: Why there are complementary learning system in the hippocampus and neo-cortex: insights from the successes and failure of connectionist models of learning and memory. Psychol. Rev. 102(3), 419–457 (1995)CrossRefGoogle Scholar
  3. 3.
    Squire, L.R., Alvarez, P.: Retrograde amnesia and memory consolidation: a neurobiological perspective. Current Opin. Neurobiol. 5(2), 169–177 (1995)CrossRefGoogle Scholar
  4. 4.
    Frankland, P.W., Bontempi, B.: The organization of recent and remote memories. Nature Rev. Neurosci. 6, 119–130 (2005)CrossRefGoogle Scholar
  5. 5.
    Gais, S., Albouy, G., Boly, M., Dang-Vu, T.T., Darsaud, A., Desseilles, M., Rauchs, G., Schabus, M., Sterpenich, V., Vandewalle, G., Maquet, P., Peigneux, P.: Sleep transforms the cerebral trace of declarative memories. Proc. Nat. Acad. Sci. USA 104(47), 18778–18783 (2007)CrossRefGoogle Scholar
  6. 6.
    Bauer, P.J.: Toward a neuro-developmental account of the development of declarative memory. Dev. Psychobiol. 50(1), 19–31 (2008)CrossRefGoogle Scholar
  7. 7.
    Uematsu, A., Matsui, M., Tanaka, C., Takahashi, T., Noguchi, K., Suzuki, M., Nishijo, H.: Developmental trajectories of amygdale and hippocampus from infancy to early adulthood in healthy individuals. PLoS ONE 7(10), e46970 (2012)CrossRefGoogle Scholar
  8. 8.
    Sharon, T., Moscovitch, M., Gilboa, A.: Rapid neocortical acquisition of long-tem arbitrary associations independent of the hippocampus. Proc. Nat. Acad. Sci. USA 108(3), 1146–1151 (2011)CrossRefGoogle Scholar
  9. 9.
    Merhav, M., Karni, A., Gilboa, A.: Neocortical catastrophic interference in healthy and amnesic adults: A paradoxical matter of time. Hippocampus 24(12), 1653–1662 (2014)CrossRefGoogle Scholar
  10. 10.
    Norman, K.A., Polyn, S.M., Detre, G.J., Haxby, J.V.: Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci. 10(9), 424–430 (2006)CrossRefGoogle Scholar
  11. 11.
    Mitchell, T., Shinkareva, S., Carlson, A., Chang, K.M., Malave, V.L., Mason, R., Just, M.A.: Predicting human brain activity associated with the meanings of nouns. Science 320(5880), 1191–1195 (2008)CrossRefGoogle Scholar
  12. 12.
    Kriegeskorte, N., Goebel, R., Bandettini, P.: Information-based functional brain mapping. Proc. Nat. Acad. Sci. USA 103(10), 3863–3868 (2006)CrossRefGoogle Scholar
  13. 13.
    Nawa, N.E., Ando, H.: Classification of self-driven mental tasks from whole-brain activity patterns. PLoS ONE 9(5), e97296 (2014)CrossRefGoogle Scholar
  14. 14.
    Atir-Sharon, T., Gilboa, A., Hazan, H., Koilis, E., Manevitz, L.M.: Decoding the formation of new semantics: MVPA investigation of rapid neocortical plasticity during associative encoding through Fast Mapping. Neural Plast. 2015, 17 (2015)Google Scholar
  15. 15.
    Gilboa, A., Hazan, H., Koilis, E., Manevitz, L., Sharon, T.: Two memory systems: identifying human memory encoding mechanisms from psychological fMRI data via machine learning techniques. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN), p. 54 (2011)Google Scholar
  16. 16.
    Merhav, M., Karni, A., Gilboa, A.: Not all declarative memories are created equal: fast mapping as a direct route to cortical declarative representations. Neuroimage 117, 80–92 (2015)CrossRefGoogle Scholar
  17. 17.
    Wiesen, J.P.: Benefits, Drawbacks, and Pitfalls of z-Score Weighting. In: 30th Annual IPMAAC Conference (2006). http://annex.ipacweb.org/library/conf/06/wiesen.pdf, 27 Jun 2006
  18. 18.
    Sladky, R., Friston, K.J., Tröstl, J., Cunnington, R., Moser, E., Windischberger, C.: Slice-timing effects and their correction in functional MRI. Neuroimage 58(2), 588–594 (2011)CrossRefGoogle Scholar
  19. 19.
    Gonzalez-Castillo, J., Saad, Z.S., Handwerker, D.A., Inati, S.J., Brenowitz, N., Bandettini, P.A.: Whole-brain, time-locked activation with simple tasks revealed using massive averaging and model-free analysis. Proc. Nat. Acad. Sci. 109(14), 5487–5492 (2012)CrossRefGoogle Scholar
  20. 20.
    Vapnik, V.: Statistical learning theory. Wiley, New York (1998)zbMATHGoogle Scholar
  21. 21.
    Vert, J.P., Tsuda, K., Schölkopf, B.: A primer on kernel methods. Kernel Methods in Computational Biology (2004)Google Scholar
  22. 22.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (2011). http://www.csie.ntu.edu.tw/~cjlin/libsvm
  23. 23.
    Hanke, M., Sederberg, P.B., Hanson, S.J., Haxby, J.V., Pollmann, S.: PyMVPA: A python toolbox for multivariate pattern analysis of fMRI data. Neuroinformatics 7(1), 37–53 (2009)CrossRefGoogle Scholar
  24. 24.
    Hu, S., Liang, H.: Causality analysis of neural connectivity: New tool and limitations of spectral granger causality. Neurocomputing 76(1), 44–47 (2012)CrossRefGoogle Scholar
  25. 25.
    Cox, C.: AFNI: software for analysis and visualization of functional magnetic resonance images. Comput. Biomed. Res. 29, 126–173 (1996)CrossRefGoogle Scholar
  26. 26.
    Talairach, J., Tournoux, P.: Co-planar stereotaxic atlas of the human brain. 3-Dimensional proportional system: an approach to cerebral imaging (1988)Google Scholar
  27. 27.
    Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. CRC Press, Boca Raton (1984)zbMATHGoogle Scholar
  28. 28.
    Gelfand, S.B., Ravishankar, C.S., Delp, E.J.: An iterative growing and pruning algorithm for classification tree design. IEEE Trans. Pattern Anal. Mach. Intell. 13(2), 163–174 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Alex Frid
    • 1
    Email author
  • Hananel Hazan
    • 2
  • Ester Koilis
    • 1
  • Larry M. Manevitz
    • 1
  • Maayan Merhav
    • 3
  • Gal Star
    • 1
  1. 1.Computer Science DepartmentUniversity of HaifaHaifaIsrael
  2. 2.Network Biology Research Laboratory, TechnionHaifaIsrael
  3. 3.German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany

Personalised recommendations