Advertisement

Are Byzantine Failures Really Different from Crash Failures?

  • Damien Imbs
  • Michel Raynal
  • Julien Stainer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9888)

Abstract

When considering n-process asynchronous systems, where up to t processes can fail, and communication is by read/write registers or reliable message-passing, are (from a computability point of view) Byzantine failures “different” from crash failures? This is the question addressed in this paper, which shows that the answer is “no” for systems where \(t<n/3\).

To this end, the paper presents a new distributed simulation whose core is an extended BG simulation suited to asynchronous message-passing systems. More precisely, assuming \(t<\min (n',n/3)\), it describes a signature-free algorithm that simulates a system of \(n'\) processes where up to t may crash, on top of a basic system of n processes where up to t may be Byzantine. In addition to extending (in a modular and direct way) the basic BG simulation to Byzantine message-passing systems this simulation also allows crash-tolerant algorithms, designed for asynchronous read/write systems, to be executed on top of asynchronous message-passing systems prone to Byzantine failures.

References

  1. 1.
    Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message passing systems. J. ACM 42(1), 121–132 (1995)CrossRefMATHGoogle Scholar
  2. 2.
    Bazzi, R., Neiger, G.: Optimally simulating crash failures in a byzantine environment. In: Toueg, S., Spirakis, P.G., Kirousis, L. (eds.) Distributed Algorithms. LNCS, vol. 579, pp. 108–128. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  3. 3.
    Borowsky, E., Gafni, E.: Generalized FLP impossibility results for \(t\)-resilient asynchronous computations. In: Proceedings 25th ACM STOC, pp. 91–100. ACM Press (1993)Google Scholar
  4. 4.
    Coan, B.A.: A compiler that increases the fault-tolerance of asynchronous protocols. IEEE Trans. Comput. 37(12), 1541–1553 (1988)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Dolev, D., Gafni, E.: Some garbage in - some garbage out,: asynchronous \(t\)-Byzantine as asynchronous benign \(t\)-resilient system with fixed \(t\)-Trojan horse inputs. Tech Report, arXiv, 14 p., July 2016. arXiv:1607.01210
  6. 6.
    Herlihy, M.P., Kozlov, D., Rajsbaum, S.: Distributed Computing through Combinatorial Topology, p. 336. Morgan Kaufmann/Elsevier, New York (2014). (ISBN 9780124045781)MATHGoogle Scholar
  7. 7.
    Ho, C., Dolev, D., van Renesse, R.: Making distributed applications robust. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007. LNCS, vol. 4878, pp. 232–246. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Imbs, D., Raynal, M., Stainer, J., Byzantine, F.: Failures to crash failures in message-passing systems: a BG simulation-based approach. Technical Report, arXiv, 27 p., October 2015. arXiv:1510.09119
  9. 9.
    Lamport, L., Shostack, R., Pease, M.: The Byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)CrossRefMATHGoogle Scholar
  10. 10.
    Mendes, H., Tasson Ch., Herlihy, M.: Distributed computability in Byzantine asynchronous systems. In: Proceedings 46th STOC, pp. 704–713. ACM Press (2014)Google Scholar
  11. 11.
    Neiger, G., Toueg, S.: Automatically increasing the fault-tolerance of distributed algorithms. J. Algorithms 11(3), 374–419 (1990)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Srikanth, T.K., Toueg, S.: Simulating authenticated broadcasts to derive simple fault-tolerant algorithms. Distributed Comput. 2(2), 80–94 (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of BremenBremenGermany
  2. 2.Institut Universitaire de FranceParisFrance
  3. 3.IRISA, Université de RennesRennesFrance
  4. 4.École Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations