Non-local Probes Do Not Help with Many Graph Problems

  • Mika Göös
  • Juho Hirvonen
  • Reut Levi
  • Moti Medina
  • Jukka Suomela
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9888)

Abstract

This work bridges the gap between distributed and centralised models of computing in the context of sublinear-time graph algorithms. A priori, typical centralised models of computing (e.g., parallel decision trees or centralised local algorithms) seem to be much more powerful than distributed message-passing algorithms: centralised algorithms can directly probe any part of the input, while in distributed algorithms nodes can only communicate with their immediate neighbours. We show that for a large class of graph problems, this extra freedom does not help centralised algorithms at all: efficient stateless deterministic centralised local algorithms can be simulated with efficient distributed message-passing algorithms. In particular, this enables us to transfer existing lower bound results from distributed algorithms to centralised local algorithms.

References

  1. 1.
    Alon, N.: On constant time approximation of parameters of bounded degree graphs. In: Goldreich, O. (ed.) Property Testing. LNCS, vol. 6390, pp. 234–239. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Alon, N., Lovett, S.: Almost \(k\)-Wise vs. \(k\)-wise independent permutations, and uniformity for general group actions. Theor. Comput. 9(15), 559–577 (2013)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Alon, N., Rubinfeld, R., Vardi, S., Xie, N.: Space-efficient local computation algorithms. In: Proceedings of SODA, pp. 1132–1139. SIAM (2012)Google Scholar
  4. 4.
    Campagna, A., Guo, A., Rubinfeld, R.: Local reconstructors and tolerant testers for connectivity and diameter. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds.) RANDOM 2013 and APPROX 2013. LNCS, vol. 8096, pp. 411–424. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Czygrinow, A., Hańćkowiak, M., Wawrzyniak, W.: Fast distributed approximations in planar graphs. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 78–92. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Even, G., Medina, M., Ron, D.: Best of Two Local Models: Local Centralized and Local Distributed Algorithms (2014). arXiv:1402.3796
  7. 7.
    Even, G., Medina, M., Ron, D.: Deterministic stateless centralized local algorithms for bounded degree graphs. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 394–405. Springer, Heidelberg (2014)Google Scholar
  8. 8.
    Even, G., Medina, M., Ron, D.: Distributed maximum matching in bounded degree graphs. In: Proceedings of ICDCN, pp. 1–19. ACM (2014)Google Scholar
  9. 9.
    Feige, U., Mansour, Y., Schapire, R.E.: Learning and Inference in the Presence of Corrupted Inputs. In: Proceedings of the 28th Conference on Learning Theory, vol. 40, pp. 637–657. J. Mach. Learn. Res. (2015)Google Scholar
  10. 10.
    Fich, F.E., Ramachandran, V.: Lower bounds for parallel computation on linked structures. In: Proceedings of SPAA, pp. 109–116. ACM Press (1990)Google Scholar
  11. 11.
    Kaplan, E., Naor, M., Reingold, O.: Derandomized constructions of k-wise (almost) independent permutations. Algorithmica 55(1), 113–133 (2009)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed locally! In: Proceedings of PODC, pp. 300–309. ACM Press (2004)Google Scholar
  13. 13.
    Lenzen, C., Wattenhofer, R.: Leveraging Linial’s locality limit. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 394–407. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Levi, R., Moshkovitz, G., Ron, D., Rubinfeld, R., Shapira, A.: Constructing near spanning trees with few local inspections. Random Struct. Algorithms (2016)Google Scholar
  15. 15.
    Levi, R., Ron, D., Rubinfeld, R.: Local algorithms for sparse spanning graphs. In: Proceedings of APPROX/RANDOM, pp. 826–842. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2014)Google Scholar
  16. 16.
    Levi, R., Rubinfeld, R., Yodpinyanee, A.: Local computation algorithms for graphs of non-constant degrees. In: Proceedings of SPAA, pp. 59–61. ACM Press (2015)Google Scholar
  17. 17.
    Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–201 (1992)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers, San Francisco (1996)MATHGoogle Scholar
  19. 19.
    Mansour, Y., Rubinstein, A., Vardi, S., Xie, N.: Converting online algorithms to local computation algorithms. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 653–664. Springer, Heidelberg (2012)Google Scholar
  20. 20.
    Mansour, Y., Vardi, S.: A local computation approximation scheme to maximum matching. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds.) RANDOM 2013 and APPROX 2013. LNCS, vol. 8096, pp. 260–273. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Naor, M., Stockmeyer, L.: What can be computed locally? SIAM J. Comput. 24(6), 1259–1277 (1995)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Parnas, M., Ron, D.: Approximating the minimum vertex cover in sublinear time and a connection to distributed algorithms. Theor. Comput. Sci. 381(1–3), 183–196 (2007)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Peleg, D.: Distributed Computing: A Locality-sensitive Approach. SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics, Philadelphia (2000)CrossRefMATHGoogle Scholar
  24. 24.
    Reingold, O., Vardi, S.: New Techniques and Tighter Bounds for Local Computation Algorithms (2014). arXiv:1404.5398
  25. 25.
    Rubinfeld, R., Tamir, G., Vardi, S., Xie, N.: Fast local computation algorithms. In: Proceedings of the ICS (2011)Google Scholar
  26. 26.
    Suomela, J.: Survey of local algorithms. ACM Comput. Surv. 45(2), 24:1–24:40 (2013)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mika Göös
    • 1
  • Juho Hirvonen
    • 2
  • Reut Levi
    • 3
  • Moti Medina
    • 3
  • Jukka Suomela
    • 2
  1. 1.Department of Computer ScienceUniversity of TorontoTorontoCanada
  2. 2.Helsinki Institute for Information Technology HIIT, Department of Computer ScienceAalto UniversityEspooFinland
  3. 3.MPI for InformaticsSaarbrückenGermany

Personalised recommendations