Certified Universal Gathering in \(\mathbb {R} ^2\) for Oblivious Mobile Robots

  • Pierre Courtieu
  • Lionel Rieg
  • Sébastien Tixeuil
  • Xavier Urbain
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9888)

Abstract

We present a unified formal framework for expressing mobile robots models, protocols, and proofs, and devise a protocol design/proof methodology dedicated to mobile robots that takes advantage of this formal framework.

As a case study, we present the first formally certified protocol for oblivious mobile robots evolving in a two-dimensional Euclidean space. In more details, we provide a new algorithm for the problem of universal gathering mobile oblivious robots (that is, starting from any initial configuration that is not bivalent, using any number of robots, the robots reach in a finite number of steps the same position, not known beforehand) without relying on a common orientation nor chirality. We give very strong guaranties on the correctness of our algorithm by proving formally that it is correct, using the Coq proof assistant.

This result demonstrates both the effectiveness of the approach to obtain new algorithms that use as few assumptions as necessary, and its manageability since the amount of developed code remains human readable.

References

  1. 1.
    Adamek, J., Nesterenko, M., Tixeuil, S.: Evaluating and optimizing stabilizing dining philosophers. In: 11th European Dependable Computing Conference, EDCC 2015, Paris, France, September 7–11, pp. 233–244. IEEE (2015)Google Scholar
  2. 2.
    Auger, C., Bouzid, Z., Courtieu, P., Tixeuil, S., Urbain, X.: Certified impossibility results for byzantine-tolerant mobile robots. In: Higashino, T., Katayama, Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp. 178–190. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Berard, B., Millet, L., Potop-Butucaru, M., Thierry-Mieg, Y., Tixeuil, S.: Formal verification of Mobile Robot Protocols. Technical report, LIP6, LINCS, IUF, May 2013Google Scholar
  4. 4.
    Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development. Coq’Art: the calculus of inductive constructions. Springer, Heidelberg (2004)CrossRefMATHGoogle Scholar
  5. 5.
    Bonnet, F., Défago, X., Petit, F., Potop-Butucaru, M., Tixeuil, S.: Discovering and assessing fine-grained metrics in robot networks protocols. In: 33rd IEEE International Symposium on Reliable Distributed Systems Workshops, SRDS Workshops 2014, Nara, Japan, October 6–9, 2014, pp. 50–59. IEEE (2014)Google Scholar
  6. 6.
    Bouzid, Z., Das, S., Tixeuil, S.: Gathering of mobile robots tolerating multiple crash faults. In: ICDCS, pp. 337–346. IEEE Computer Society, Philadelphia, Pennsylvania, USA, July 2013Google Scholar
  7. 7.
    Bramas, Q., Tixeuil, S.: Wait-free gathering without chirality. In: Scheideler, C. (ed.) Structural Information and Communication Complexity. LNCS, vol. 9439, pp. 313–327. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25258-2_22 CrossRefGoogle Scholar
  8. 8.
    Bérard, B., Courtieu, P., Millet, L., Potop-Butucaru, M., Rieg, L., Sznajder, N., Tixeuil, S., Urbain, X., Methods, F.: Formal method for mobile robots: current results and open problems. Int. J. Inf. Soci. 7(3), 101–114 (2015). Invited PaperGoogle Scholar
  9. 9.
    Castéran, P., Filou, V.: Tasks, types and tactics for local computation systems. Stud. Inf. Univers. 9(1), 39–86 (2011)Google Scholar
  10. 10.
    Coquand, T., Paulin, C.: Inductively defined types. In: Martin-Löf, P., Mints, G. (eds.) COLOG-88. LNCS, vol. 417, pp. 50–56. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  11. 11.
    Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: A Certified Universal Gathering Algorithm for Oblivious Mobile Robots. CoRR, abs/1506.01603 (2015)Google Scholar
  12. 12.
    Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: Impossibility of gathering, a certification. Inf. Process. Lett. 115, 447–452 (2015)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Devismes, S., Lamani, A., Petit, F., Raymond, P., Tixeuil, S.: Optimal grid exploration by asynchronous oblivious robots. In: Richa, A.W., Scheideler, C. (eds.) SSS 2012. LNCS, vol. 7596, pp. 64–76. Springer, Heidelberg (2012)Google Scholar
  14. 14.
    Dieudonné, Y., Petit, F.: Self-stabilizing gathering with strong multiplicity detection. Theor. Comput. Sci. 428, 47–57 (2012)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool Publishers, San Rafeal (2012)MATHGoogle Scholar
  16. 16.
    Izumi, T., Izumi, T., Kamei, S., Ooshita, F.: Feasibility of polynomial-time randomized gathering for oblivious mobile robots. IEEE Trans. Parallel Distrib. Syst. 24(4), 716–723 (2013)CrossRefGoogle Scholar
  17. 17.
    Izumi, T., Souissi, S., Katayama, Y., Inuzuka, N., Défago, X., Wada, K., Yamashita, M.: The gathering problem for two oblivious robots with unreliable compasses. SIAM J. Comput. 41(1), 26–46 (2012)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Millet, L., Potop-Butucaru, M., Sznajder, N., Tixeuil, S.: On the synthesis of mobile robots algorithms: the case of ring gathering. In: Felber, P., Garg, V. (eds.) SSS 2014. LNCS, vol. 8756, pp. 237–251. Springer, Heidelberg (2014)Google Scholar
  19. 19.
    Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge University Press, Cambridge, UK (2012)Google Scholar
  20. 20.
    Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Pierre Courtieu
    • 1
  • Lionel Rieg
    • 2
  • Sébastien Tixeuil
    • 3
  • Xavier Urbain
    • 4
    • 5
  1. 1.CÉDRIC – Conservatoire national des arts et métiersParisFrance
  2. 2.Collège de FranceParisFrance
  3. 3.UPMC Sorbonne Universités, LIP6-CNRS 7606, Institut Universitaire de FranceParisFrance
  4. 4.ENSIIEÉvryFrance
  5. 5.LRI, CNRS UMR 8623, Université Paris-Sud, Université Paris-SaclayOrsayFrance

Personalised recommendations