Quantitative Monitor Automata

  • Krishnendu Chatterjee
  • Thomas A. Henzinger
  • Jan Otop
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9837)


In this paper we review various automata-theoretic formalisms for expressing quantitative properties. We start with finite-state Boolean automata that express the traditional regular properties. We then consider weighted \(\omega \)-automata that can measure the average density of events, which finite-state Boolean automata cannot. However, even weighted \(\omega \)-automata cannot express basic performance properties like average response time. We finally consider two formalisms of weighted \(\omega \)-automata with monitors, where the monitors are either (a) counters or (b) weighted automata themselves. We present a translation result to establish that these two formalisms are equivalent. Weighted \(\omega \)-automata with monitors generalize weighted \(\omega \)-automata, and can express average response time property. They present a natural, robust, and expressive framework for quantitative specifications, with important decidable properties.


  1. 1.
    Almagor, S., Boker, U., Kupferman, O.: Discounting in LTL. In: \’{A}brahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 424–439. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  2. 2.
    Alur, R., D’Antoni, L., Deshmukh, J.V., Raghothaman, M., Yuan, Y.: Regular functions and cost register automata. In: LICS 2013, pp. 13–22 (2013)Google Scholar
  3. 3.
    Baier, C., Dubslaff, C., Klüppelholz, S.: Trade-off analysis meets probabilistic model checking. In: CSL-LICS 2014, pp. 1:1–1:10 (2014)Google Scholar
  4. 4.
    Baier, C., Klein, J., Klüppelholz, S., Wunderlich, S.: Weight monitoring with linear temporal logic: complexity and decidability. In: CSL-LICS 2014, pp. 11:1–11:10 (2014)Google Scholar
  5. 5.
    Boker, U., Chatterjee, K., Henzinger, T.A., Kupferman, O.: Temporal specifications with accumulative values. ACM TOCL 15(4), 1–25 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bollig, B., Gastin, P., Monmege, B., Zeitoun, M.: Pebble weighted automata and transitive closure logics. In: Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G., Abramsky, S. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 587–598. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Bouyer, P., Markey, N., Matteplackel, R.M.: Averaging in LTL. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 266–280. Springer, Heidelberg (2014)Google Scholar
  8. 8.
    Brázdil, T., Brozek, V., Chatterjee, K., Forejt, V., Kucera, A.: Two views on multiple mean-payoff objectives in Markov decision processes. In: LICS 2011, pp. 33–42 (2011)Google Scholar
  9. 9.
    Brázdil, T., Chatterjee, K., Forejt, V., Kucera, A.: Multigain: a controller synthesis tool for MDPs with multiple mean-payoff objectives. In: TACAS 2015, pp. 181–187 (2015)Google Scholar
  10. 10.
    Chatterjee, K.: Markov decision processes with multiple long-run average objectives. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 473–484. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Chatterjee, K., Doyen, L.: Energy and mean-payoff parity Markov decision processes. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 206–218. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Chatterjee, K., Doyen, L., Edelsbrunner, H., Henzinger, T.A., Rannou, P.: Mean-payoff automaton expressions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 269–283. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Chatterjee, K., Doyen, L., Henzinger, T.A.: Expressiveness and closure properties for quantitative languages. LMCS, 6(3) (2010)Google Scholar
  14. 14.
    Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. ACM TOCL 11(4), 23 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Chatterjee, K., Forejt, V., Wojtczak, D.: Multi-objective discounted reward verification in graphs and MDPs. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 228–242. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Chatterjee, K., Henzinger, T.A., Otop, J.: Nested weighted limit-average automata of bounded width. To appear at MFCS 2016 (2016)Google Scholar
  17. 17.
    Chatterjee, K., Henzinger, T.A., Otop, J.: Quantitative automata under probabilistic semantics. To appear at LICS 2016 (2016)Google Scholar
  18. 18.
    Chatterjee, K., Henzinger, T.A., Otop, J.: Nested weighted automata. In: LICS 2015, pp. 725–737 (2015)Google Scholar
  19. 19.
    Chatterjee, K., Komárková, Z., Kretínský, J.: Unifying two views on multiple mean-payoff objectives in Markov Decision Processes. In: LICS 2015, pp. 244–256 (2015)Google Scholar
  20. 20.
    Chatterjee, K., Majumdar, R., Henzinger, T.A.: Markov decision processes with multiple objectives. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 325–336. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Degorre, A., Doyen, L., Gentilini, R., Raskin, J.-F., Toruńczyk, S.: Energy and mean-payoff games with imperfect information. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 260–274. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata, 1st edn. Springer, Heidelberg (2009)CrossRefzbMATHGoogle Scholar
  23. 23.
    Droste, M., Rahonis, G.: Weighted automata and weighted logics on infinite words. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 49–58. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, New York (1996)CrossRefzbMATHGoogle Scholar
  25. 25.
    Forejt, V., Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Quantitative multi-objective verification for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 112–127. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  26. 26.
    Pnueli, A., The temporal logic of programs. In: 18th Annual Symposium on Foundations of Computer Science, pp. 46–57. IEEE (1977)Google Scholar
  27. 27.
    Puterman, M.L., Processes, M.D.: Discrete Stochastic Dynamic Programming, 1st edn. Wiley, New York (1994)Google Scholar
  28. 28.
    Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer Science, vol. b, pp. 133–191. MIT Press, Cambridge (1990)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2016

Authors and Affiliations

  • Krishnendu Chatterjee
    • 1
  • Thomas A. Henzinger
    • 1
  • Jan Otop
    • 2
  1. 1.IST AustriaKlosterneuburgAustria
  2. 2.University of WroclawWroclawPoland

Personalised recommendations