Advertisement

Synteny Among Solanaceae Genomes

  • Amy Frary
  • Sami Doganlar
  • Anne FraryEmail author
Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

The Solanaceae was among the first plant families to be analyzed via comparative mapping and thus was a pioneer in the realm of synteny studies. Analyses of chromosome content and organization have employed a range of techniques, including linkage mapping of genes and molecular markers, physical mapping via fluorescence in situ hybridization, and sequencing of relatively small genomic segments as well as the complete sequencing of the tomato genome. Early comparisons in the family involved tomato and its close relative potato and have extended outward to include eggplant, pepper, tobacco, and petunia. Not surprisingly, the degree of synteny among these species is a function of the time since their divergence, with inversion, translocation, and transposition being the chief mechanisms of chromosome rearrangement. The results of this work provide important insight into the modes and tempo of plant genome evolution while serving a practical purpose as well: knowledge of genome synteny and colinearity makes it easier to leverage resources from one species to another in this agronomically important family.

Keywords

Tomato Eggplant Pepper Synteny Solanaceae 

Notes

Acknowledgments

We are grateful to The Scientific and Technological Research Council of Turkey (Project No. 104T224) for support of our work in eggplant.

References

  1. Abrouk M, Murat F, Pont C, Messing J, Jackson S, Faraut T, Tannier E, Plomion C, Cooke R, Feuillet C, Salse J (2010) Paleogenomics of plants: synteny-based modelling of extinct ancestors. Trends Plant Sci 15:479–487CrossRefPubMedGoogle Scholar
  2. Albrecht E, Chetelat RT (2009) Comparative genetic linkage map of Solanum sect. Juglandifolia: evidence of chromosomal rearrangements and overall synteny with the tomatoes and related nightshades. Theor Appl Genet 118:831–847CrossRefPubMedGoogle Scholar
  3. Ameline-Torregrosa C, Wang B-B, O’Bleness MS, Deshpande S, Zhu H, Roe B, Young ND, Cannon SB (2008) Identification and characterization of nucleotide-binding site-leucine-rich repeat genes in the model plant Medicago truncatula. Plant Physiol 146:5–21CrossRefPubMedPubMedCentralGoogle Scholar
  4. Andolfo G, Sanseverino W, Rombauts S, Van de Peer Y, Bradeen JM, Carputo D, Frusciante L, Ercolano MR (2013) Overview of tomato (Solanum lycopersicum) candidate pathogen recognition genes reveals important Solanum R locus dynamics. New Phytol 197:223–237CrossRefPubMedGoogle Scholar
  5. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218CrossRefGoogle Scholar
  6. Asamizu E, Shirasawa K, Hirakawa H, Sato S, Tabata S, Yano K, Ariizumi T, Shibata D, Ezura H (2012) Mapping of Micro-Tom BAC-end sequences to the reference tomato genome reveals possible genome rearrangements and polymorphisms. Int J Plant Genomics. doi: 10.1155/2012/437026 PubMedPubMedCentralGoogle Scholar
  7. Bai Y, Lindhout P (2007) Domestication and breeding of tomatoes: what have we gained and what can we gain in the future? Ann Bot 100:1085–1094CrossRefPubMedPubMedCentralGoogle Scholar
  8. Barchi L, Lanteri S, Portis E, Val G, Volante A, Pulcini L, Ciriaci T, Acciarri N, Barbierato V, Toppino L (2012) A RAD tag derived marker based eggplant linkage map and the location of QTLs determining anthocyanin pigmentation. PLoS ONE 7:e43740CrossRefPubMedPubMedCentralGoogle Scholar
  9. Baumgarten A, Cannon S, Spangler R, May G (2003) Genome-level evolution of resistance genes in Arabidopsis thaliana. Genetics 165:309–319PubMedPubMedCentralGoogle Scholar
  10. Bernatzky R, Tanksley SD (1986) Toward a saturated linkage map in tomato based on isozymes and random cDNA sequences. Genetics 112:887–898PubMedPubMedCentralGoogle Scholar
  11. Bindler G, van der Hoeven R, Gunduz I, Plieske J, Ganal M, Rossi L, Gadani F, Donini P (2007) A microsatellite marker based linkage map of tobacco. Theor Appl Genet 114:341–349CrossRefPubMedGoogle Scholar
  12. Bindler G, Plieske J, Bakaher N, Gunduz I, Ivanov N, van der Hoeven R, Ganal M, Donini P (2011) A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development. Theor Appl Genet 123:219–230CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bombarely A, Rosli HG, Vrebaliv J, Moffett P, Mueller LA, Martin GB (2012) A draft genome sequence of Nicotiana benthamiana to enhance molecular plant-microbe biology research. Mol Plant Microbe Interact 25:1523–1530CrossRefPubMedGoogle Scholar
  14. Bonierbale MW, Plaisted RL, Tanksley SD (1988) RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120:1095–1103PubMedPubMedCentralGoogle Scholar
  15. Bonnema G, Schipper D, van Heusden S, Zabel P, Lindhout P (1997) Tomato chromosome 1: high-resolution genetic and physical mapping of the short arm in an interspecific Lycopersicon esculentum × L. peruvianum cross. Mol Gen Genet 253:455–462CrossRefPubMedGoogle Scholar
  16. Bossolini E, Klahre U, Brandenburg A, Reinhardt D, Kuhlemeier C (2011) High resolution linkage maps of the model organism Petunia reveal substantial synteny decay with the related genome of tomato. Genome 54:327–340CrossRefPubMedGoogle Scholar
  17. Burnham CR (1962) Discussions in cytogenetics. Burgess, MinneapolisGoogle Scholar
  18. Cericola F, Portis E, Lanteri S, Toppino L, Barchi L, Acciarri N, Pulcini L, Sala T, Rotino GL (2014) Linkage disequilibrium and genome-wide association analysis for anthocyanin pigmentation and friut color in eggplant. BMC Genom 15:896–911CrossRefGoogle Scholar
  19. Chetelat RT, Meglic V (2000) Molecular mapping of chromosomes segments introgressed from Solanum lycopersicoides into cultivated tomato (Lycopersicon esculentum). Theor Appl Genet 100:232–241CrossRefGoogle Scholar
  20. Chetelat RT, Meglic V, Cisneros P (2000) A genetic map of tomato based on BC1 Lycopersicon esculentum × Solanum lycopersicoides reveals overall synteny but supressed recombination between these homeologous genomes. Genetics 154:857–867PubMedPubMedCentralGoogle Scholar
  21. Contreras-M A, Spooner DM (1999) Revision of Solanum section Etuberosum (subgenus Potatoe). In: Nee M, Symon DE, Lester RN, Jessop JP (eds) Solanaceae IV. Royal Botanic Gardens, Kew, pp 227–245Google Scholar
  22. D’Agostino N, Golas T, van der Geest H, Bombarely A, Dawood T, Zethof J, Driedonks N, Wijnker E, Bargsten J, Nap J-P, Mariani C, Rieu I (2013) Genomic analysis of the native European Solanum species, S. dulcamara. BMC Genom 15:356–370CrossRefGoogle Scholar
  23. Doganlar S, Frary A, Daunay M-C, Lester RN, Tanksley SD (2002) A comparative genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the Solanaceae. Genetics 161:1697–1711PubMedPubMedCentralGoogle Scholar
  24. Doganlar S, Frary A, Daunay M-C, Huvenaars K, Mank R, Frary A (2014) High resolution map of eggplant (Solanum melongena) reveals extensive chromosome rearrangement in domesticated members of the Solanaceae. Euphytica 198:231–241CrossRefGoogle Scholar
  25. Fukuoka H, Miyatake K, Nunome T, Negoro S, Shirasawa K, Isobe S, Asamizu E, Yamaguchi H, Ohyama A (2012) Development of gene-based markers and construction of an integrated linkage map in eggplant by using Solanum orthologous (SOL) gene sets. Theor Appl Genet 125:47–56CrossRefPubMedGoogle Scholar
  26. Fulton TM, Van der Hoeven R, Eannetta NT, Tanksley SD (2002) Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell 14:1457–1467CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gadani F, Hayes A, Opperman CH, Lommel SA, Sosinski BR, Burke M, Hi L, Brierly R, Salstead A, Heer J, Fuelner G, Lakey N (2003) Large scale genome sequencing and analysis of Nicotiana tabacum: the tobacco genome initiative. In: Proceedings, 5èmes Journées Scientifiques du Tabac de Bergerac—5th Bergerac Tobacco Scientific Meeting, Bergerac, pp 117–130Google Scholar
  28. Gebhardt C, Ritter E, Barone A, Debener T, Walkemeier B, Schachtschabel U, Kaufman H, Thompson RD, Bonierbale MW, Ganal MW, Tanskley SD, Salamini F (1991) RFLP maps of potato and their alignment with the homoeologous tomato genome. Theor Appl Genet 83:49–57CrossRefPubMedGoogle Scholar
  29. Gramazio P, Prohens J, Plazas M, Andjar I, Herraiz FJ, Castillo E, Knapp S, Meyer RS, Vilanova S (2014) Location of chlorogenic acid biosynthesis pathway and polyphenol oxidase genes in a new interspecific anchored linkage map of eggplant. BMC Plant Biol 14:350–365CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gregory TR (2005) The C-value enigma in plants and animals: a review of parallels and an appeal for partnership. Ann Rev Bot 95:133–146CrossRefGoogle Scholar
  31. Grube RC, Radwanski ER, Jahn M (2000) Comparative genetics of disease resistance within the Solanaceae. Genetics 155:873–887PubMedPubMedCentralGoogle Scholar
  32. Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13CrossRefGoogle Scholar
  33. Heiser CB, Pickersgill B (1969) Names for the cultivated Capsicum species (Solanaceae). Taxon 18:277–283CrossRefGoogle Scholar
  34. Hermann K, Klahre U, Moser M, Sheehan H, Mandel T, Kuhlemeier C (2013) Tight genetic linkage of prezygotic barrier loci creates a multifunctional speciation island in Petunia. Curr Biol 23:873–877CrossRefPubMedGoogle Scholar
  35. Hirakawa H, Shirasawa K, Miyatake K, Nunome T, Negoro S, Ohyama A, Yamaguchi H, Sato S, Isobe S, Tabata S, Fukuoka H (2014) Draft genome sequence of eggplant (Solanum melongena L.): the representative Solanum species indigenous to the Old World. DNA Res doi: 10.1093/dnares/dsu027
  36. Huang S, Vleeshouwers VGAA, Werij JS, Hutten RC, van Eck HJ, Visser RGF, Jacobsen E (2004) The R3 resistance to Phytophthora infestans in potato is conferred by two closely linked R genes with distinct specificities. Mol Plant Microbe Interact 17:428–435CrossRefPubMedGoogle Scholar
  37. Huang S, van der Vossen EAG, Kuang H, Vleeshouwers VGAA, Zhang N, Borm TJA, van Eck HJ, Baker B, Jacobsen E, Visser RGF (2005) Comparative genomics enabled the isolation of the R3a late blight resistance gene in potato. Plant J 42:251–261CrossRefPubMedGoogle Scholar
  38. Iorizzo M, Gao L, Mann H, Traini A, Chiusano ML, Kilian A, Aversano R, Carputo D, Bradeen JM (2014) A DArT marker-based linkage map for wild potato Solanum bulbocastanum facilitates structural comparisons between Solanum A and B genomes. BMC Genet 15:123–132CrossRefPubMedPubMedCentralGoogle Scholar
  39. Iovene M, Wielgus SM, Simon PW, Buell CR, Jiang J (2008) Chromatin structure and physical mapping of chromosome 6 of potato and comparative analyses with tomato. Genetics 180:1307–1317CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kamenetzky L, Asis R, Bassi S. de Godoy F, Bermudez L, Fernie AR, Van Sluys MA, Vrebalov J, Giovannoni JJ, Rossi M, Carrari F (2010) Genomic analysis of wild tomato introgressions determining metabolism- and yield-associated traits. Plant Physiol 152:1772–1786Google Scholar
  41. Kenton A, Parokonny AS, Gleba YY, Bennett MD (1993) Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics. Mol Gen Genet 240:159–169CrossRefPubMedGoogle Scholar
  42. Kim S, Park M, Yeom S-I, Kim Y-M, Lee JM et al (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46:270–279CrossRefPubMedGoogle Scholar
  43. Ku H-K, Vision T, Liu J, Tanksley SD (2000) Comparing sequenced segments of the tomato and Arabidopsis genomes: large-scale duplication followed by selective gene loss creates a network of synteny. Proc Natl Acad Sci USA 97:9121–9126CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kuhl JC, Hanneman RE, Havey MJ (2001) Characterization and mapping of Rpi1, a light-blight resistance locus from diploid (1EBN) Mexican Solanum pennatisectum. Mol Genet Genomics 265:977–985CrossRefPubMedGoogle Scholar
  45. Labroche P, Poirier-Hamon S, Pernes J (1983) Inheritance of leaf peroxidase isozymes in Nicotiana alata and linkage with the S-incompatibility locus. Theor Appl Genet 65:163–170CrossRefPubMedGoogle Scholar
  46. Lanteri S, Pickersgill B (1993) Chromosomal structural changes in Capsicum annuum L. and C. chinense Jacq. Euphytica 67:155–160Google Scholar
  47. Lim KY, Matyasek R, Kovarik A, Leitch AR (2004) Genome evolution in allotetraploid Nicotiana. Biol J Linn Soc 82:599–606CrossRefGoogle Scholar
  48. Lin TY, Kao YY, Lin S, Lin RF, Chen CM, Huang CH, Wang CK, Lin YZ, Chen CC (2001) A genetic linkage map of Nicotiana plumbaginifolia/Nicotiana longiflora based on RFLP and RAPD markers. Theor Appl Genet 103:905–911CrossRefGoogle Scholar
  49. Lindqvist-Kreuze H, Cho K, Portal L, Rodriguez F, Simon R, Mueller LA, Spooner DM, Bonierbale M (2013) Linking the potato genome to the conserved ortholog set (COS) markers. BMC Genom 14:51–63CrossRefGoogle Scholar
  50. Lippman ZB, Semel Y, Zamir D (2007) An integrated view of quantitative trait variation using tomato interspecific introgression lines. Curr Opin Genet Dev 17:545–552CrossRefPubMedGoogle Scholar
  51. Livingstone KD, Lackney VK, Blauth JR, van Wijk R, Jahn MK (1999) Genome mapping in Capsicum and the evolution of genome structure in the Solanaceae. Genetics 152:1183–1202PubMedPubMedCentralGoogle Scholar
  52. Lou Q, Iovene M, Spooner DM, Buell CR, Jiang J (2010) Evolution of chromosome 6 of Solanum species revealed by comparative fluorescence in situ hybridization mapping. Chromosoma 119:435–442CrossRefPubMedGoogle Scholar
  53. Mazourek M, Cirulli ET, Collier SM, Landry LG, Kang B-C, Quirin EA, Bradeen JM, Moffett P, Jahn MM (2009) The fractionated orthology of Bs2 and Rx/Gpa2 supports shared synteny of disease resistance in the Solanaceae. Genetics 182:1351–1364CrossRefPubMedPubMedCentralGoogle Scholar
  54. McCouch (2001) Genomics and synteny. Plant Physiol 125:152–155CrossRefPubMedPubMedCentralGoogle Scholar
  55. Nadeau JH, Taylor BA (1984) Lengths of chromosomal segments conserved since divergence of man and mouse. Proc Natl Acad Sci USA 81:814–818CrossRefPubMedPubMedCentralGoogle Scholar
  56. Nunome T, Negoro S, Kono I, Kanamori H, Miyatake K, Yamaguchi H, Ohyama A, Fukuoka H (2009) Development of SSR markers derived from SSR-enriched genomic library of eggplant (Solanum melongena L.). Theor Appl Genet 119:1143–1153CrossRefPubMedGoogle Scholar
  57. Park M, Jo SH, Kwon J-K, Park J, Ahn JH, Kim S, Lee Y-H, Yang T-J, Hur C-G, Kang B-C, Kim B-D, Choi D (2011) Comparative analysis of pepper and tomato reveals euchromatin expansion of pepper genome caused by differential accumulation of Ty3/Gypsy-like elements. BMC Genom 12:85CrossRefGoogle Scholar
  58. Pel MA, Foster SJ, Park T-H, Rietman H, van Arkel G, Jones JDG, Van Eck HJ, Jacobsen E, Visser RGF, Van der Vossen EAG (2009) Mapping and cloning of late blight rsistance genes from Solanum venturii using an interspecific candidate gene approach. Mol Plant Microb Interact 22:601–615CrossRefGoogle Scholar
  59. Peralta I, Spooner DM (2001) Granule-bound starch synthase (GBSSI) gene phylogeny of wild tomatoes (Solanum L. section Lycopersicon (Mill.) Wettst. subsection Lycopersicon). Am J Bot 88:1888–1902CrossRefPubMedGoogle Scholar
  60. Perez F, Menendez A, Dehal P, Quiros CF (1999) Genomic structural differentiation in Solanum: comparative mapping of the A and E genomes. Theor Appl Genet 98:1183–1193CrossRefGoogle Scholar
  61. Pertuze RA, Ji Y, Chetelat RT (2002) Comparative linkage map of the Solanum lycopersicoides and S. sitiens genomes and their differentiation from tomato. Genome 45:1003–1012CrossRefPubMedGoogle Scholar
  62. Peters SA, Bargsten JW, Szinay D, van de Belt J, Visser RGF, Bai Y, de Jong H (2012) Structural homology in the Solanaceae: analysis of genomic regions in support of synteny studies in tomato, potato and pepper. Plant J 71:602–614CrossRefPubMedGoogle Scholar
  63. Portis E, Barchi L, Toppino L, Lanteri S, Acciarri N, Felicioni N, Fusari F, Barbierato V, Cericola F, Vale G, Rotino GL (2014) QTL mapping in eggplant reveals clusters of yield-related loci and orthology with the tomato genome. PLoS ONE 9:e89499CrossRefPubMedPubMedCentralGoogle Scholar
  64. Presting G, Frary A, Pillen K, Tanksley SD (1996) Telomere-homologous sequences occur near the centromeres of many tomato chromosomes. Mol Gen Genet 251:526–531CrossRefPubMedGoogle Scholar
  65. Prince JP, Pochard E, Tanksley SD (1993) Construction of a molecular linkage map of pepper and comparison of synteny with tomato. Genome 36:404–417CrossRefPubMedGoogle Scholar
  66. Qin C, Yu C, Shen Y, Fang X et al (2014) Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc Natl Acad Sci 111:5135–5140CrossRefPubMedPubMedCentralGoogle Scholar
  67. Ramanna M, Hermsen J (1979) Unique meiotic behavior in F1 plants from a cross between non-tuberous and tuberous Solanum species in section Petota. Euphytica 28:9–15CrossRefGoogle Scholar
  68. Raskina O, Barber JC, Nevo E, Belyayev A (2008) Repetitive DNA and chromosomal rearrangement: speciation-related events in plant genomes. Cytogenet Genome Res 120:351–357CrossRefPubMedGoogle Scholar
  69. Rick CM (1979) Biosystematic studies in Lycopersicon and closely related species of Solanum. In: Hawkes JG, Lester RN, Skelding AD (eds) The biology and taxonomy of the Solanaceae. Academic Press, New York, pp 667–678Google Scholar
  70. Seah S, Yaghoobi J, Rossi M, Gleason CA, Williamson VM (2004) The nematode-resistance gene, Mi-1, is associated with an inverted chromosomal segment in susceptible compared to resistance tomato. Theor Appl Genet 108:1635–1642CrossRefPubMedGoogle Scholar
  71. Seah S, Telleen AC, Williamson VM (2007) Introgressed and endogenous Mi-1 gene clusters in tomato differ by complex rearrangements in flanking sequences and show sequence exchange and diversifying selection among homologues. Theor Appl Genet 114:1289–1302CrossRefPubMedGoogle Scholar
  72. Sierro N, Battey JND, Ouadi S, Bovet L, Goepfert S, Bakaher N, Peitsch MC, Ivanov NV (2013) Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis. Genome Biol 14:R60CrossRefPubMedPubMedCentralGoogle Scholar
  73. Sierro N, Battey JND, Ouadi S, Bakaher N, Bovet L, Willig A, Goepfert S, Peitsch MC, Ivanov NV (2014) The tobacco genome sequence and its comparison with those of tomato and potato. Nat Commun 5:3833CrossRefPubMedPubMedCentralGoogle Scholar
  74. Spooner D, Anderson G, Jansen R (1993) Chloroplast DNA evidence for the interrelationships of tomatoes, potatoes and pepinos (Solanaceae). Am J Bot 80:676–688CrossRefGoogle Scholar
  75. Strommer J, Gerats AGM, Sanago M, Molnar SJ (2000) A gene-based RFLP map of Petunia. Theor Appl Genet 100:899–905CrossRefGoogle Scholar
  76. Suen DF, Wang CK, Lin RF, Kao YY, Lee FM, Chen CC (1997) Assignment of DNA markers to Nicotiana sylvestris chromosomes using monosomic alien addition lines. Theor Appl Genet 94:331–337CrossRefGoogle Scholar
  77. Szinay D, Wijnker E, van den Berg R, Visser RGF, de Jong H, Bai Y (2012) Chromosome evolution in Solanum traced by cross-species BAC-FISH. New Phytol 195:688–698CrossRefPubMedGoogle Scholar
  78. Tang X, Szinay D, Lang C, Ramanna MS, ven der Vossen EAG, Datema E, Lankhorst RK, de Boer J, Peters SA, Bachem C, Stiekema W, Visser RGF, de Jong J, Bai Y (2008) Cross-species bacterial artificial chromosome-fluorescence in situ hybridization painting of the tomato and potato chromosome 6 reveals undescribed chromosomal rearrangements. Genetics 180:1319–1328CrossRefPubMedPubMedCentralGoogle Scholar
  79. Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066CrossRefPubMedGoogle Scholar
  80. Tanksley SD, Bernatzky R, Lapitan NL, Prince JP (1988) Conservation of gene repertoire but not gene order in pepper. Proc Natl Acad Sci USA 85:6419–6423CrossRefPubMedPubMedCentralGoogle Scholar
  81. Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pineda O, Roder MS, Wing RA, Wu R, Young ND (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160PubMedPubMedCentralGoogle Scholar
  82. ten Hoopen R, Harbord RM, Maes T, Nanninga N, Robbins TP (1998) The self-incompatibility (S) locus in Petunia hybrida is located on chromosome III in a region syntenic for the Solanaceae. Plant J 16:729–734CrossRefGoogle Scholar
  83. Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641CrossRefGoogle Scholar
  84. Traini A, Iorizzo M, Mann H, Bradeen JM, Carputo D, Frusciante L, Chiusano ML (2013) Genome microscale heterogeneity among wild potatoes revealed by diversity arrays technology marker sequences. Int J of Genomics 2013:257218CrossRefGoogle Scholar
  85. van der Knaap E, Sanyal A, Jackson SA, Tanksley SD (2004) High-resolution fine mapping and fluorescence in situ hybridization analysis of sun, a locus controlling tomato fruit shape, reveals a region of the tomato genome prone to DNA rearrangements. Genetics 168:2127–2140CrossRefPubMedPubMedCentralGoogle Scholar
  86. van Heusden AW, Koornneef M, Voorrips RE, Bruggemann W, Pet G, Vrielink-van Ginkel R, Chen X, Lindhout P (1999) Three QTLs from Lycopersicon peruvianum confer a high level of resistance to Clavibacter michiganensis ssp. michiganensis. Theor Appl Genet 99:1068–1074CrossRefGoogle Scholar
  87. van Wordragen MF, Weide R, Liharska T, Vandersteen A, Koornneef M, Zabel P (1994) Genetic and molecular organization of the short arm and pericentromeric region of tomato chromosome 6. Euphytica 79:169–174CrossRefGoogle Scholar
  88. Wang J, Hu H, Zhao T, Yang Y, Chen T, Yang M, Yu W, Zhang B (2015) Genome-wide analysis of bHLH transcription factor and involvement in the infection by yellow leaf curl virus in tomato (Solanum lycopersicum). BMC Genom 16:39–53CrossRefGoogle Scholar
  89. Wang Y, Tang X, Cheng Z, Mueller L, Giovannoni J, Tanksley SD (2006) Euchromatin and pericentromeric heterochromatin: comparative composition in the tomato genome. Genetics 172:2529–2540CrossRefPubMedPubMedCentralGoogle Scholar
  90. Wang Y, Diehl A, Wu F, Vrebalov J, Giovannoni J, Siepel A, Tanksley SD (2008) Sequencing and comparative analysis of a conserved syntenic segment in the Solanaceae. Genetics 180:391–408CrossRefPubMedPubMedCentralGoogle Scholar
  91. Watanabe K, Orrillo M, Vega S, Valkonen J, Pehu E, Hurtado A, Tanksley S (1995) Overcoming crossing barriers between non-tuber-bearing and tuber-bearing Solanum species: towards potato genome enhancement with a broad spectrum of solanaceous genetic resources. Genome 38:27–35CrossRefPubMedGoogle Scholar
  92. Wu F, Eannetta NT, Xu Y, Tanksley SD (2009a) A detailed synteny map of the eggplant genome based on conserved ortholog set II (COSII) markers. Theor Appl Genet 118:927–935CrossRefPubMedGoogle Scholar
  93. Wu F, Eannetta NT, Xu Y, Durrett R, Mazourek M, Jahn MM, Tanksley SD (2009b) A COSII genetic map of the pepper genome provides a detailed picture of synteny with tomato and new insights into recent chromosome evolution in the genus Capsicum. Theor Appl Genet 118:1279–1293CrossRefPubMedGoogle Scholar
  94. Wu F, Eannetta NT, Xu Y, Plieske J, Ganal M, Pozzi C, Bakaher N, Tanksley SD (2010) COSII genetic maps of two diploid Nicotiana species provide a detailed picture of synteny with tomato and insights into chromosome evolution in tetraploid N. tabacum. Theor Appl Genet 120:809–827CrossRefPubMedGoogle Scholar
  95. Wu F, Mueller LA, Crouzillat D, Petiard V, Tanksley SD (2006) Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes (COSII) for comparative, evolutionary and systematic studies: a test case in the euasterid plant clade. Genetics 174:1407–1420 Google Scholar
  96. Wu F, Tanksley SD (2010) Chromosomal evolution in the plant family Solanaceae. BMC Genom 11:182–193CrossRefGoogle Scholar
  97. Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap (2008) A retrotransposon mediated gene duplication underlies morphological variation of tomato fruit. Science 319:1527–1530CrossRefPubMedGoogle Scholar
  98. Yang H-B, Liu WY, Kang W-H, Jahn M, Kang B-C (2009) Development of SNP markers linked to the L locus in Capsicum spp. By comparative genetic analysis. Mol Breed 24:433–446CrossRefGoogle Scholar
  99. Zhu W, Ouyang S, Iovene M, O’Brien K, Vuong H, Jiang J, Buell CR (2008) Analysis of 90 Mb of the potato genome reveals conservation of gene structure and order with tomato but divergence in repetitive sequence composition. BMC Genom 9:286–300CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Biological SciencesMount Holyoke CollegeSouth HadleyUSA
  2. 2.Department of Molecular Biology & GeneticsIzmir Institute of TechnologyUrla, IzmirTurkey

Personalised recommendations