Advertisement

Optimizing MPC for Robust and Scalable Integer and Floating-Point Arithmetic

  • Liisi Kerik
  • Peeter LaudEmail author
  • Jaak Randmets
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9604)

Abstract

Secure multiparty computation (SMC) is a rapidly maturing field, but its number of practical applications so far has been small. Most existing applications have been run on small data volumes with the exception of a recent study processing tens of millions of education and tax records. For practical usability, SMC frameworks must be able to work with large collections of data and perform reliably under such conditions. In this work we demonstrate that with the help of our recently developed tools and some optimizations, the Sharemind secure computation framework is capable of executing tens of millions integer operations or hundreds of thousands floating-point operations per second. We also demonstrate robustness in handling a billion integer inputs and a million floating-point inputs in parallel. Such capabilities are absolutely necessary for real world deployments.

Keywords

Secure Multiparty Computation Floating-point operations Protocol design 

References

  1. 1.
    2013 ACM SIGSAC Conference on Computer and Communications Security, CCS 2013, Berlin, Germany, 4–8 November 2013. ACM (2013)Google Scholar
  2. 2.
    Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, 12–16 October 2015. ACM (2015)Google Scholar
  3. 3.
    Aliasgari, M., Blanton, M., Zhang, Y., Steele, A.: Secure computation on floating point numbers. In: 20th Annual Network and Distributed System Security Symposium, NDSS 2013, San Diego, California, USA, 24–27 February 2013. The Internet Society (2013)Google Scholar
  4. 4.
    Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for secure multi-party computation. In: CCS 2008: Proceedings of the 15th ACM Conference on Computer and Communications Security, pp. 257–266. ACM (2008)Google Scholar
  5. 5.
    Bogdanov, D., Jõemets, M., Siim, S., Vaht, M.: A short paper on how the national tax office evaluated a tax fraud detection system based on secure multi-party computation. In: Proceedings of 19th International Conference on Financial Cryptography and Data Security. LNCS, vol. 8975, pp. 227–234. Springer, Heidelberg (2015)Google Scholar
  6. 6.
    Bogdanov, D., Kamm, L., Laur, S., Pruulmann-Vengerfeldt, P., Talviste, R., Willemson, J.: Privacy-preserving statistical data analysis on federated databases. In: Preneel, B., Ikonomou, D. (eds.) APF 2014. LNCS, vol. 8450, pp. 30–55. Springer, Heidelberg (2014)Google Scholar
  7. 7.
    Bogdanov, D., Laud, P., Laur, S., Pullonen, P.: From input private to universally composable secure multi-party computation primitives. In: IEEE 27th Computer Security Foundations Symposium, CSF 2014, pp. 184–198. IEEE, July 2014Google Scholar
  8. 8.
    Bogdanov, D., Laud, P., Randmets, J.: Domain-polymorphic programming of privacy-preserving applications. In: Proceedings of the Ninth Workshop on Programming Languages and Analysis for Security, PLAS@ECOOP 2014, Uppsala, Sweden, 29 July 2014, p. 53. ACM (2014)Google Scholar
  9. 9.
    Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 192–206. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance secure multi-party computation for data mining applications. Int. J. Inf. Secur. 11(6), 403–418 (2012)CrossRefGoogle Scholar
  11. 11.
    Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Burden, R.L., Faires, J.D.: Numerical Analysis, 9th edn. Brooks/Cole, Boston (2011)zbMATHGoogle Scholar
  13. 13.
    Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.: SEPIA: privacy-preserving aggregation of multi-domain network events and statistics. In: USENIX Security Symposium, pp. 223–239. Washington, DC, USA (2010)Google Scholar
  14. 14.
    Catrina, O., Saxena, A.: Secure computation with fixed-point numbers. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 35–50. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Cramer, R., Damgård, I.B., Maurer, U.M.: General secure multi-party computation from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Cramer, R., Damgård, I.B., Nielsen, J.B.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–299. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Damgård, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous multiparty computation: theory and implementation. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 160–179. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Demmler, D., Dessouky, G., Koushanfar, F., Sadeghi, A., Schneider, T., Zeitouni, S.: Automated synthesis of optimized circuits for secure computation. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, 12–6 October 2015 [2], pp. 1504–1517 (2015)Google Scholar
  19. 19.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC, pp. 218–229. ACM (1987)Google Scholar
  20. 20.
    Henecka, W., Kögl, S., Sadeghi, A.R., Schneider, T., Wehrenberg, I.: TASTY: tool for automating secure two-party computations. In: Proceedings of the 17th ACM Conference on Computer and Communications Security, CCS 2010, pp. 451–462. ACM (2010)Google Scholar
  21. 21.
    Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Kamm, L.: Privacy-preserving statistical analysis using secure multi-party computation. Ph.D. thesis, University of Tartu (2015)Google Scholar
  23. 23.
    Kamm, L., Willemson, J.: Secure floating point arithmetic and private satellite collision analysis. Int. J. Inf. Secur. 14(6), 531–548 (2015)CrossRefGoogle Scholar
  24. 24.
    Keller, M., Scholl, P., Smart, N.P.: An architecture for practical actively secure MPC with dishonest majority. In: 2013 ACM SIGSAC Conference on Computer and Communications Security, CCS 2013, Berlin, Germany, 4–8 November 2013 [1], pp. 549–560 (2013)Google Scholar
  25. 25.
    Kerschbaum, F., Schröpfer, A., Zilli, A., Pibernik, R., Catrina, O., de Hoogh, S., Schoenmakers, B., Cimato, S., Damiani, E.: Secure collaborative supply-chain management. IEEE Comput. 44(9), 38–43 (2011)CrossRefGoogle Scholar
  26. 26.
    Krips, T., Willemson, J.: Hybrid model of fixed and floating point numbers in secure multiparty computations. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.) ISC 2014. LNCS, vol. 8783, pp. 179–197. Springer, Heidelberg (2014)Google Scholar
  27. 27.
    Laud, P., Randmets, J.: A domain-specific language for low-level secure multiparty computation protocols. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, 12–16 October 2015 [2], pp. 1492–1503 (2015)Google Scholar
  28. 28.
    Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party computation. J. Cryptology 22(2), 161–188 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Liu, C., Huang, Y., Shi, E., Katz, J., Hicks, M.W.: Automating efficient ram-model secure computation. In: 2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA, 18–21 May 2014, pp. 623–638. IEEE Computer Society (2014)Google Scholar
  30. 30.
    Liu, Y.C., Chiang, Y.T., Hsu, T.S., Liau, C.J., Wang, D.W.: Floating point arithmetic protocols for constructing secure data analysis application. Procedia Comput. Sci. 22, 152–161 (2013). 17th International Conference in Knowledge Based and Intelligent Information and Engineering Systems - KES2013Google Scholar
  31. 31.
    Malka, L.: VMCrypt: modular software architecture for scalable secure computation. In: Proceedings of the 18th ACM Conference on Computer and Communications Security, CCS 2011, Chicago, Illinois, USA, 17–21 October 2011, pp. 715–724. ACM (2011)Google Scholar
  32. 32.
    Pettai, M., Laud, P.: Automatic proofs of privacy of secure multi-party computation protocols against active adversaries. In: 2015 IEEE 28th Computer Security Foundations Symposium (CSF 2015) (2015)Google Scholar
  33. 33.
    Pullonen, P., Siim, S.: Combining secret sharing and garbled circuits for efficient private IEEE 754 floating-point computations. In: Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015 Workshops. LNCS, vol. 8976, pp. 172–183. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  34. 34.
    Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Zhang, Y., Steele, A., Blanton, M.: PICCO: a general-purpose compiler for private distributed computation. In: 2013 ACM SIGSAC Conference on Computer and Communications Security, CCS 2013, Berlin, Germany, 4–8 November 2013 [1], pp. 813–826Google Scholar

Copyright information

© International Financial Cryptography Association 2016

Authors and Affiliations

  1. 1.Cybernetica ASTartuEstonia
  2. 2.University of TartuTartuEstonia

Personalised recommendations