How the Duration of Automated Driving Influences Take-Over Performance and Gaze Behavior

  • Anna FeldhütterEmail author
  • Christian Gold
  • Sonja Schneider
  • Klaus Bengler
Conference paper


The take-over of the driving task in highly automated vehicles at system limits is subject to latest research in ergonomics and human-machine-interaction. Most studies focus on driving simulator studies, examining the take-over performance mainly after short periods of automated driving, although take-over requests may not occur such frequently in future automated vehicles. This study tries to close this gap and compares driving performance and reaction times of a take-over after 5 and 20 min of automated driving. Further, the gaze behavior in the beginning and in the end of the 20 min period is compared. While the duration of automated driving did not show to influence the take-over performance, gaze behavior changed within the 20 min of automated driving. The SuRT and the 20 min automation period induced slower reactions, but no significant changes regarding accelerations and time to collision.


Take-over Automated driving Automation effects Gaze behavior 



The opportunity to conduct this study was granted by the research program ASHAD (Automation in Society—The Case of Highly Automated Driving) by the Munich Center for Technology and Society, Technical University of Munich.


  1. Damböck D (2013) Automationseffekte im Fahrzeug—von der Reaktion zur Übernahme. Dissertation, Technische Universität München, MünchenGoogle Scholar
  2. Damböck D, Farid M, Tönert L, Bengler K (2012) Übernahmezeiten beim hochautomatisierten Fahren. 5. Tagung FahrerassistenzGoogle Scholar
  3. Gasser TM (2012) Rechtsfolgen zunehmender Fahrzeugautomatisierung: Gemeinsamer Schlussbericht der Projektgruppe. Bremerhaven. Retrieved 09 Jul 2012Google Scholar
  4. Gold C, Damböck D, Lorenz L, Bengler K (2013) Take over! How long does it take to get the driver back into the loop? Proc Hum Factors Ergon Soc Annu Meet 57(1):1938–1942CrossRefGoogle Scholar
  5. Gold C, Berisha I, Bengler K (2015) Utilization of drivetime—performing non-driving related tasks while driving highly automated. In: Proceedings of the Human Factors and Ergonomics Society (HFES) 2015. Annual Meeting, Los Angeles, CAGoogle Scholar
  6. Gold C, Körber M, Lechner D, Bengler K (2016) Taking over control from highly automated vehicles in complex traffic situations—the role of traffic density. Hum Factors. doi: 10.1177/0018720816634226 Google Scholar
  7. Graw P, Kräuchi K, Knoblauch V, Wirz-Justice A, Cajochen C (2004) Circadian and wake-dependent modulation of fastest and slowest reaction times during the psychomotor vigilance task. Physiol Behav 80(5):695–701CrossRefGoogle Scholar
  8. SAE International (2014) SAE surface vehicle information report: taxonomy and definitions for terms related to on-road motor vehicle automated driving systems (No. J3016). Retrieved 12 Nov 2014Google Scholar
  9. ISO 15007-1:2014 (11.2014): ISO International Organization for StandardizationGoogle Scholar
  10. ISO/TS 14198 (11.2012): ISO International Organization for Standardization.Google Scholar
  11. Knipling R, Wierwille W (1994) Vehicle-based drowsy driver detection: current status and future prospects. In: Paper presented at the IVHS America fourth annual meeting, 17–20 April 1994Google Scholar
  12. Körber M, Gold C, Lechner D, Bengler K (2016) The influence of age on the take-over of vehicle control in highly automated driving. Transport Res F Traffic Psychol Behav 39:19–32. doi: 10.1016/j.trf.2016.03.002 CrossRefGoogle Scholar
  13. Louw T, Merat N, Jamson AH (2015) Engaging with highly automated driving: to be or not to be in the loop? In: 8th International driving symposium on Human factors in driver assessment, training and vehicle design, Salt Lake City, UT. Retrieved 13 Nov 2015Google Scholar
  14. Moray N (2000) Are observers ever really complacent when monitoring automated systems? Proc Hum Factors Ergon Soc Annu Meet 44(6):592–595CrossRefGoogle Scholar
  15. Neubauer C, Matthews G, Saxby D (2012) The effects of cell phone use and automation on driver performance and subjective state in simulated driving. Proc Hum Factors Ergon Soc Annu Meet 56(1):1987–1991CrossRefGoogle Scholar
  16. Petermann-Stock I, Hackenberg L, Muhr T, Mergl C (2013) Wie lange braucht der Fahrer?: Eine Analyse zu Übernahmezeiten aus verschiedenen Nebentätigkeiten während einer hochautomatisierten Staufahrt. In 6. Tagung Fahrerassistenzsysteme, München, 2013Google Scholar
  17. Radlmayr J, Gold C, Lorenz L, Farid M, Bengler K (2014) How traffic situations and non-driving related tasks affect the take-over quality in highly automated driving. Proc Hum Factors Ergon Soc Annu Meet 58(1):2063–2067CrossRefGoogle Scholar
  18. Saxby DJ, Matthews G, Warm JS, Hitchcock EM, Neubauer C (2013) Active and passive fatigue in simulated driving: discriminating styles of workload regulation and their safety impacts. J Exp Psychol Appl 19(4):287–300CrossRefGoogle Scholar
  19. Schleicher R, Galley N, Briest S, Galley L (2008) Blinks and saccades as indicators of fatigue in sleepiness warnings: looking tired? Ergonomics 51(7):982–1010CrossRefGoogle Scholar
  20. Schmidt EA, Schrauf M, Simon M, Fritzsche M, Buchner A, Kincses WE (2009) Drivers’ misjudgement of vigilance state during prolonged monotonous daytime driving. Accid Anal Prev 41(5):1087–1093CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Anna Feldhütter
    • 1
    Email author
  • Christian Gold
    • 1
  • Sonja Schneider
    • 1
  • Klaus Bengler
    • 1
  1. 1.Lehrstuhl für ErgonomieTechnische Universität MünchenGarchingGermany

Personalised recommendations