Decomposition Theorems for Square-free 2-matchings in Bipartite Graphs

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9224)

Abstract

A square-free 2-matching in an undirected graph is a simple 2-matching without cycles of length four. In bipartite graphs, the maximum square-free 2-matching problem is well-solved. Previous results include min-max theorems, polynomial combinatorial algorithms, polyhedral description with dual integrality, and discrete convex structure.

In this paper, we further investigate the structure of square-free 2-matchings in bipartite graphs to present new decomposition theorems, which serve as an analogue of the Dulmage-Mendelsohn decomposition for bipartite matchings and the Edmonds-Gallai decomposition for nonbipartite matchings. We exhibit two canonical minimizers of the set function in the min-max formula, and a characterization of the maximum square-free 2-matchings with the aid of these canonical minimizers.

Keywords

Matching theory Square-free 2-matching Dulmage-Mendelsohn decomposition Edmonds-Gallai decomposition 

References

  1. 1.
    Babenko, M.A.: Improved algorithms for even factors and square-free simple \(b\)-matchings. Algorithmica 64, 362–383 (2012)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bérczi, K., Kobayashi, Y.: An algorithm for \((n-3)\)-connectivity augmentation problem: Jump system approach. J. Comb. Theor. Ser. B 102, 565–587 (2012)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bérczi, K., Végh, L.A.: Restricted b-matchings in degree-bounded graphs. In: Eisenbrand, F., Shepherd, F.B. (eds.) IPCO 2010. LNCS, vol. 6080, pp. 43–56. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Berge, C.: Sur le couplage maximum d’un graphe. Comptes Rendus Hebdomadaires Séances l’de Académie de Sciences 247, 258–259 (1958)MathSciNetMATHGoogle Scholar
  5. 5.
    Bouchet, A., Cunningham, W.H.: Delta-matroids, jump systems, and bisubmodular polyhedra. SIAM J. Discrete Math. 8, 17–32 (1995)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Boyd, S., Iwata, S., Takazawa, K.: Finding 2-factors closer to TSP tours in cubic graphs. SIAM J. Discrete Math. 27, 918–939 (2013)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Boyd, S., Sitters, R., van der Ster, S., Stougie, L.: The traveling salesman problem on cubic and subcubic graphs. Math. Program. 144, 227–245 (2014)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Cornuéjols, G., Pulleyblank, W.: A matching problem with side conditions. Discrete Math. 29, 135–159 (1980)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Correa, J.R., Larré, O., Soto, J.A.: TSP tours in cubic graphs: beyond 4/3. SIAM J. Discrete Math. 29, 915–939 (2015)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Cunningham, W.H.: Matching, matroids, and extensions. Math. Program. 91(3), 515–542 (2002)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling-salesman problem. Oper. Res. 2, 393–410 (1954)MathSciNetGoogle Scholar
  12. 12.
    Dulmage, A.L., Mendelsohn, N.S.: Coverings of bipartite graphs. Can. J. Math. 10, 517–534 (1958)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Dulmage, A.L., Mendelsohn, N.S.: A structure theory of bipartite graphs of finite exterior dimension. Trans. Roy. Soc. Can. Sect. III 53, 1–13 (1959)Google Scholar
  14. 14.
    Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Frank, A.: Restricted \(t\)-matchings in bipartite graphs. Discrete Appl. Math. 131, 337–346 (2003)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Gallai, T.: Kritische Graphen II. A Magyar Tudományos Akadémia—Matematikai Kutató Intézetének Közleményei 8, 373–395 (1963)MathSciNetMATHGoogle Scholar
  17. 17.
    Gallai, T.: Maximale Systeme unabhänginger Kanten. A Magyar Tudományos Akadémia—Matematikai Kutató Intézetének Közleményei 9, 401–413 (1964)MathSciNetMATHGoogle Scholar
  18. 18.
    Geelen, J.F.: The \(C_6\)-free \(2\)-factor problem in bipartite graphs is NP-complete (1999), unpublishedGoogle Scholar
  19. 19.
    Hartvigsen, D.: Extensions of matching theory. Ph.D. thesis. Carnegie Mellon University (1984)Google Scholar
  20. 20.
    Hartvigsen, D.: The square-free 2-factor problem in bipartite graphs. In: Cornuéjols, G., Burkard, R.E., Woeginger, G.J. (eds.) IPCO 1999. LNCS, vol. 1610, pp. 234–241. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  21. 21.
    Hartvigsen, D.: Finding maximum square-free 2-matchings in bipartite graphs. J. Comb. Theor. Ser. B 96, 693–705 (2006)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Hartvigsen, D., Li, Y.: Maximum cardinality simple \(2\)-matchings in subcubic graphs. SIAM J. Discrete Math. 21, 1027–1045 (2011)MathSciNetMATHGoogle Scholar
  23. 23.
    Hartvigsen, D., Li, Y.: Polyhedron of triangle-free simple \(2\)-matchings in subcubic graphs. Math. Program. 138, 43–82 (2013)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Iri, M.: Structural theory for the combinatorial systems characterized by submodular functions. In: Pulleyblank, W.R. (ed.) Progress in Combinatorial Optimization, pp. 197–219. Academic Press, New York (1984)CrossRefGoogle Scholar
  25. 25.
    Karp, J.A., Ravi, R.: A \(9/7\)-approximation algorithm for graphic TSP in cubic bipartite graphs. In: Jansen, K., Rolim, J., Devanur, N., Moore, C. (eds.) Approximation, Randomization, and Combinatorial Optimization, Algorithms and Techniques, pp. 284–296 (2014)Google Scholar
  26. 26.
    Király, Z.: \(C_4\)-free \(2\)-factors in bipartite graphs. Technical report, TR-2001-13, Egerváry Research Group (1999)Google Scholar
  27. 27.
    Kobayashi, Y.: A simple algorithm for finding a maximum triangle-free \(2\)-matching in subcubic graphs. Discrete Optim. 7, 197–202 (2010)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Kobayashi, Y.: Triangle-free \(2\)-matchings and M-concave functions on jump systems. Discrete Appl. Math. 175, 35–42 (2014)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Kobayashi, Y., Szabó, J., Takazawa, K.: A proof of Cunningham’s conjecture on restricted subgraphs and jump systems. J. Comb. Theor. Ser. B 102, 948–966 (2012)CrossRefMATHGoogle Scholar
  30. 30.
    Kobayashi, Y., Yin, X.: An algorithm for finding a maximum \(t\)-matching excluding complete partite subgraphs. Discrete Optim. 9, 98–108 (2012)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Kőnig, D.: Graphok és matrixok. Matematikai és Fizikai Lapok 38, 116–119 (1931)Google Scholar
  32. 32.
    Lovász, L., Plummer, M.D.: Matching Theory. AMS Chelsea Publishing, Providence (2009)CrossRefMATHGoogle Scholar
  33. 33.
    Makai, M.: On maximum cost \(K_{t, t}\)-free \(t\)-matchings of bipartite graphs. SIAM J. Discrete Math. 21, 349–360 (2007)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Murota, K.: M-convex functions on jump systems: A general framework for minsquare graph factor problem. SIAM J. Discrete Math. 20, 226–231 (2006)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Murota, K.: Matrices and Matroids for Systems Analysis. Springer, Heidelberg (2010). softcover ednCrossRefMATHGoogle Scholar
  36. 36.
    Pap, G.: Alternating paths revisited II: Restricted \(b\)-matchings in bipartite graphs. Technical report, TR-2005-13. Egerváry Research Group (2005)Google Scholar
  37. 37.
    Pap, G.: Combinatorial algorithms for matchings, even factors and square-free 2-factors. Math. Program. 110, 57–69 (2007)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Schrijver, A.: Combinatorial Optimization—Polyhedra and Efficiency. Springer, Heidelberg (2003)MATHGoogle Scholar
  39. 39.
    Takazawa, K.: A weighted \(K_{t, t}\)-free \(t\)-factor algorithm for bipartite graphs. Math. Oper. Res. 34, 351–362 (2009)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Takazawa, K.: Approximation algorithms for the minimum \(2\)-edge connected spanning subgraph problem and the graph-TSP in regular bipartite graphs via restricted \(2\)-factors, Preprint, RIMS-1826. Kyoto University, Research Institute for Mathematical Sciences (2015)Google Scholar
  41. 41.
    Tutte, W.T.: The factorization of linear graphs. J. Lond. Math. Soc. 22, 107–111 (1947)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Vornberger, O.: Easy and hard cycle covers, Preprint, Universität Paderborn (1980)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Industrial and Systems Engineering, Faculty of Science and EngineeringHosei UniversityTokyoJapan

Personalised recommendations