Advertisement

On the Multiplicative Complexity of Boolean Functions and Bitsliced Higher-Order Masking

  • Dahmun Goudarzi
  • Matthieu Rivain
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9813)

Abstract

Higher-order masking is a widely used countermeasure to make software implementations of blockciphers achieve high security levels against side-channel attacks. Unfortunately, it often comes with a strong impact in terms of performances which may be prohibitive in some contexts. This situation has motivated the research for efficient schemes that apply higher-order masking with minimal performance overheads. The most widely used approach is based on a polynomial representation of the cipher s-box(es) allowing the application of standard higher-order masking building blocks such as the ISW scheme (Ishai-Sahai-Wagner, Crypto 2003). Recently, an alternative approach has been considered which is based on a bitslicing of the s-boxes. This approach has been shown to enjoy important efficiency benefits, but it has only been applied to specific blockciphers such as AES, PRESENT, or custom designs. In this paper, we present a generic method to find a Boolean representation of an s-box with efficient bitsliced higher-order masking. Specifically, we propose a method to construct a circuit with low multiplicative complexity. Compared to previous work on this subject, our method can be applied to any s-box of common size and not necessarily to small s-boxes. We use it to derive higher-order masked s-box implementations that achieve important performance gain compared to optimized state-of-the-art implementations.

References

  1. [ABK98]
    Anderson, R., Biham, E., Knudsen, L.: Serpent: a proposal for the advanced encryption standard. NIST AES Propos. (1998)Google Scholar
  2. [BGRV15]
    Balasch, J., Gierlichs, B., Reparaz, O., Verbauwhede, I.: DPA, bitslicing and masking at 1 GHz. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 599–619. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  3. [BMP13]
    Boyar, J., Matthews, P., Peralta, R.: Logic minimization techniques with applications to cryptology. J. Cryptol. 26(2), 280–312 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. [BPP00]
    Boyar, J., Peralta, R., Pochuev, D.: On the multiplicative complexity of Boolean functions over the basis \((\wedge,\oplus,\mathbf{1})\). Theor. Comput. Sci. 235(1), 43–57 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  5. [BR00]
    Barreto, P., Rijmen, V.: The Khazad legacy-level block cipher. In: First Open NESSIE Workshop (2000)Google Scholar
  6. [Can05]
    Canright, D.: A very compact S-box for AES. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. [CGP+12]
    Carlet, C., Goubin, L., Prouff, E., Quisquater, M., Rivain, M.: Higher-order masking schemes for S-boxes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 366–384. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. [CJRR99]
    Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. [CMH13]
    Courtois, N., Mourouzis, T., Hulme, D.: Exact logic minimization and multiplicative complexity of concrete algebraic and cryptographic circuits. Adv. Intell. Syst. 6(3–4), 43–57 (2013)Google Scholar
  10. [Cou07]
    Courtois, N.T.: CTC2 and fast algebraic attacks on block ciphers revisited. Cryptology ePrint Archive, Report 2007/152 (2007). http://eprint.iacr.org/2007/152
  11. [CPRR14]
    Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security and mask refreshing. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 410–424. Springer, Heidelberg (2014)Google Scholar
  12. [CPRR15]
    Carlet, C., Prouff, E., Rivain, M., Roche, T.: Algebraic decomposition for probing security. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 742–763. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  13. [CRV14]
    Coron, J.-S., Roy, A., Vivek, S.: Fast evaluation of polynomials over binary finite fields and application to side-channel countermeasures. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 170–187. Springer, Heidelberg (2014)Google Scholar
  14. [DDF14]
    Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 423–440. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  15. [DPV01]
    Daemen, J., Peeters, M., Van Assche, G.: Bitslice ciphers and power analysis attacks. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 134–149. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. [GLSV15]
    Grosso, V., Leurent, G., Standaert, F.-X., Varıcı, K.: LS-designs: bitslice encryption for efficient masked software implementations. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 18–37. Springer, Heidelberg (2015)Google Scholar
  17. [GR16]
    Goudarzi, D., Rivain, M.: How fast can higher-order masking be in software? Cryptology ePrint Archive (2016). http://eprint.iacr.org/
  18. [ISW03]
    Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. [MS92]
    Mirwald, R., Schnorr, C.P.: The multiplicative complexity of quadratic Boolean forms. Theor. Comput. Sci. 102(2), 307–328 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  20. [PLW10]
    Poschmann, A., Ling, S., Wang, H.: 256 bit standardized crypto for 650 GE – GOST revisited. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 219–233. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. [PR13]
    Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 142–159. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  22. [RP10]
    Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. [SSA+07]
    Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockcipher CLEFIA (extended abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 181–195. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. [Sto16]
    Stoffelen, K.: Optimizing S-box implementations for several criteria using sat solvers. In: Fast Software Encryption (2016)Google Scholar
  25. [SYY+02]
    Shimoyama, T., Yanami, H., Yokoyama, K., Takenaka, M., Itoh, K., Yajima, J., Torii, N., Tanaka, H.: The block cipher SC2000. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 312–327. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  26. [TP14]
    Turan Sönmez, M., Peralta, R.: The multiplicative complexity of Boolean functions on four and five variables. In: Eisenbarth, T., Öztürk, E. (eds.) LightSec 2014. LNCS, vol. 8898, pp. 21–33. Springer, Heidelberg (2015)Google Scholar

Copyright information

© International Association for Cryptologic Research 2016

Authors and Affiliations

  1. 1.CryptoExpertsParisFrance
  2. 2.ENS, CNRS, INRIA and PSL Research UniversityParisFrance

Personalised recommendations