Outfix-Guided Insertion

(Extended Abstract)
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9840)


Motivated by work on bio-operations on DNA strings, we consider an outfix-guided insertion operation that can be viewed as a generalization of the overlap assembly operation on strings studied previously. As the main result we construct a finite language L such that the outfix-guided insertion closure of L is nonregular. We consider also the closure properties of regular and (deterministic) context-free languages under the outfix-guided insertion operation and decision problems related to outfix-guided insertion. Deciding whether a language recognized by a deterministic finite automaton is closed under outfix-guided insertion can be done in polynomial time.


Language operations Closure properties Regular languages 


  1. 1.
    Bertram, J.S.: The molecular biology of cancer. Mol. Asp. Med. 21(6), 167–223 (2000)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Csuhaj-Varju, E., Petre, I., Vaszil, G.: Self-assembly of strings and languages. Theoret. Comput. Sci. 374, 74–81 (2007)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Daley, M., Kari, L., Gloor, G., Siromoney, R.: Circular contextual insertions/deletions with applications to biomolecular computation. In: String Processing and Information Retrieval Symposium, pp. 47–54 (1999)Google Scholar
  4. 4.
    Enaganti, S., Ibarra, O., Kari, L., Kopecki, S.: On the overlap assembly of strings and languages. Nat. Comput. (2016). dx.doi.org/10.1007/s11047-015-9538-x
  5. 5.
    Enaganti, S.K., Ibarra, O.H., Kari, L., Kopecki, S.: Further remarks on DNA overlap assembly, manuscript (2016)Google Scholar
  6. 6.
    Enaganti, S.K., Kari, L., Kopecki, S.: A formal language model of dna polymerase enzymatic activity. Fundam. Inform. 138, 179–192 (2015)MathSciNetMATHGoogle Scholar
  7. 7.
    Flavell, R., Sabo, D., Bandle, E., Weissmann, C.: Site-directed mutagenesis: effect of an extracistronic mutation on the in vitro propagation of bacteriophage qbeta RNA. Proc. Natl. Acad. Sci. 72(1), 367–371 (1975)CrossRefGoogle Scholar
  8. 8.
    Galiukschov, B.: Semicontextual grammars (in Russian). Mat. Log. Mat. Lingvistika 38–50 (1981)Google Scholar
  9. 9.
    Ginsburg, S., Greibach, S.: Deterministic context free languages. Inf. Control 9, 620–648 (1966)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Haussler, D.: Insertion languages. Inf. Sci. 31, 77–89 (1983)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Hemsley, A., Arnheim, N., Toney, M.D., Cortopassi, G., Galas, D.J.: A simple method for site-directed mutagenesis using the polymerase chain reaction. Nucleic Acids Res. 17(16), 6545–6551 (1989)CrossRefGoogle Scholar
  12. 12.
    Kari, L.: On insertion and deletion in formal languages. Ph.D. thesis, University of Turku (1991)Google Scholar
  13. 13.
    Kari, L., Thierrin, G.: Contextual insertions/deletions and computability. Inf. Comput. 131(1), 47–61 (1996)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Krassovitskiy, A., Rogozhin, Y., Verlan, S.: Computational power of insertion-deletion (P) systems with rules of size two. Nat. Comput. 10, 835–852 (2011)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Lee, J., Shin, M.K., Ryu, D.K., Kim, S., Ryu, W.S.: Insertion and deletion mutagenesis by overlap extension PCR. In: Braman, J. (ed.) In Vitro Mutagenesis Protocols, 3rd edn, pp. 137–146. Humana Press, New York (2010)CrossRefGoogle Scholar
  16. 16.
    Liu, H., Naismith, J.H.: An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. BMC Biotechnol. 8(1), 91–101 (2008)CrossRefGoogle Scholar
  17. 17.
    Margenstern, M., Păun, G., Rogozhin, Y., Verlan, S.: Context-free insertion-deletion systems. Theoret. Comput. Sci. 330(2), 339–348 (2005)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Păun, G., Pérez-Jiménez, M.J., Yokomori, T.: Representations and characterizations of languages in Chomsky hierarchy by means of insertion-deletion systems. Int. J. Found. Comput. Sci. 19(4), 859–871 (2008)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Pǎun, G.: On semicontextual grammars. Bull. Math. Soc. Sci. Math. Rouman. 28, 63–68 (1984)MathSciNetMATHGoogle Scholar
  20. 20.
    Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cambridge University Press, Cambridge (2009)MATHGoogle Scholar
  21. 21.
    Takahara, A., Yokomori, T.: On the computational power of insertion-deletion systems. Nat. Comput. 2, 321–336 (2003)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Yu, S.: Regular languages. In: Salomaa, A., Rozenberg, G. (eds.) Handbook of Formal Languages, vol. I, pp. 41–110. Springer, Heidelberg (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Da-Jung Cho
    • 1
  • Yo-Sub Han
    • 1
  • Timothy Ng
    • 2
  • Kai Salomaa
    • 2
  1. 1.Department of Computer ScienceYonsei UniversitySeoulRepublic of Korea
  2. 2.School of ComputingQueen’s UniversityKingstonCanada

Personalised recommendations