A Perfect Class of Context-Sensitive Timed Languages

  • Devendra Bhave
  • Vrunda Dave
  • S. N. Krishna
  • Ramchandra Phawade
  • Ashutosh Trivedi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9840)

Abstract

Perfect languages—a term coined by Esparza, Ganty, and Majumdar—are the classes of languages that are closed under Boolean operations and enjoy decidable emptiness problem. Perfect languages form the basis for decidable automata-theoretic model-checking for the respective class of models. Regular languages and visibly pushdown languages are paradigmatic examples of perfect languages. Alur and Dill initiated the language-theoretic study of timed languages and introduced timed automata capturing a timed analog of regular languages. However, unlike their untimed counterparts, timed regular languages are not perfect. Alur, Fix, and Henzinger later discovered a perfect subclass of timed languages recognized by event-clock automata. Since then, a number of perfect subclasses of timed context-free languages, such as event-clock visibly pushdown languages, have been proposed. There exist examples of perfect languages even beyond context-free languages:—La Torre, Madhusudan, and Parlato characterized first perfect class of context-sensitive languages via multistack visibly pushdown automata with an explicit bound on number of stages where in each stage at most one stack is used. In this paper we extend their work for timed languages by characterizing a perfect subclass of timed context-sensitive languages called dense-time multistack visibly pushdown languages and provide a logical characterization for this class of timed languages.

Keywords

Perfect languages Context-sensitive languages Multistack automata Timed languages 

References

  1. 1.
    Abdulla, P., Atig, M., Stenman, J.: Dense-timed pushdown automata. In: LICS, pp. 35–44 (2012)Google Scholar
  2. 2.
    Alur, R., Dill, D.: A theory of timed automata. TCS 126, 183–235 (1994)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: a determinizable class of timed automata. TCS 211(1–2), 253–273 (1999)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Symposium on Theory of Computing, pp. 202–211 (2004)Google Scholar
  5. 5.
    Atig, M.F.: Model-checking of ordered multi-pushdown automata. Log. Methods Comput. Sci. 8(3), 1–31 (2012)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bar-Hillel, Y., Perles, M., Shamir, E.: On formal properties of simple phrase structure grammars. Zeitschrift für Phonetik, Sprachwissenschaft und Kommunikationsforschung 14, 143–172 (1961)MathSciNetMATHGoogle Scholar
  7. 7.
    Bhave, D., Dave, V., Krishna, S.N., Phawade, R., Trivedi, A.: A logical characterization for dense-time visibly pushdown automata. In: Dediu, A.-H., Janoušek, J., Martín-Vide, C., Truthe, B. (eds.) LATA 2016. LNCS, vol. 9618, pp. 89–101. Springer, Heidelberg (2016). doi:10.1007/978-3-319-30000-9_7 CrossRefGoogle Scholar
  8. 8.
    Bhave, D., Dave, V., Krishna, S.N., Phawade, R., Trivedi, A.: A perfect class of context-sensitive timed languages. Technical report, IIT Bombay (2016). www.cse.iitb.ac.in/internal/techreports/reports/TR-CSE-2016-80.pdf
  9. 9.
    Czerwiński, W., Hofman, P., Lasota, S.: Reachability problem for weak multi-pushdown automata. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 53–68. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Esparza, J., Ganty, P., Majumdar, R.: A perfect model for bounded verification. In: LICS, pp. 285–294. IEEE Computer Society (2012)Google Scholar
  11. 11.
    La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive languages. In: LICS, pp. 161–170 (2007)Google Scholar
  12. 12.
    La Torre, S., Napoli, M., Parlato, G.: Scope-bounded pushdown languages. In: Shur, A.M., Volkov, M.V. (eds.) DLT 2014. LNCS, vol. 8633, pp. 116–128. Springer, Heidelberg (2014)Google Scholar
  13. 13.
    La Torre, S., Napoli, M., Parlato, G.: A unifying approach for multistack pushdown automata. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part I. LNCS, vol. 8634, pp. 377–389. Springer, Heidelberg (2014)Google Scholar
  14. 14.
    La Torre, S., Madhusudan, P., Parlato, G.: The language theory of bounded context-switching. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 96–107. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Trivedi, A., Wojtczak, D.: Recursive timed automata. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 306–324. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Van Tang, N., Ogawa, M.: Event-clock visibly pushdown automata. In: Nielsen, M., Kučera, A., Miltersen, P.B., Palamidessi, C., Tůma, P., Valencia, F. (eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 558–569. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Devendra Bhave
    • 1
  • Vrunda Dave
    • 1
  • S. N. Krishna
    • 1
  • Ramchandra Phawade
    • 1
  • Ashutosh Trivedi
    • 1
    • 2
  1. 1.IIT BombayMumbaiIndia
  2. 2.CU BoulderBoulderUSA

Personalised recommendations