An Extremal Series of Eulerian Synchronizing Automata

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9840)

Abstract

We present an infinite series of n-state Eulerian automata whose reset words have length at least \((n^2-3)/2\). This improves the current lower bound on the length of shortest reset words in Eulerian automata. We conjecture that \((n^2-3)/2\) also forms an upper bound for this class and we experimentally verify it for small automata by an exhaustive computation.

Keywords

Eulerian automaton Reset threshold Reset word Synchronizing automaton 

References

  1. 1.
    Ananichev, D., Gusev, V., Volkov, M.: Slowly synchronizing automata and digraphs. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 55–65. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Ananichev, D.S., Volkov, M.V.: Synchronizing generalized monotonic automata. Theor. Comput. Sci. 330(1), 3–13 (2005)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Ananichev, D.S., Volkov, M.V., Gusev, V.V.: Primitive digraphs with large exponents and slowly synchronizing automata. J. Math. Sci. 192(3), 263–278 (2013)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Béal, M.P., Berlinkov, M.V., Perrin, D.: A quadratic upper bound on the size of a synchronizing word in one-cluster automata. Int. J. Found. Comput. Sci. 22(2), 277–288 (2011)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Berlinkov, M.V.: Synchronizing quasi-Eulerian and quasi-one-cluster Automata. Int. J. Found. Comput. Sci. 24(6), 729–745 (2013)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Berlinkov, M., Szykuła, M.: Algebraic synchronization criterion and computing reset words. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234, pp. 103–115. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  7. 7.
    Biskup, M.T., Plandowski, W.: Shortest synchronizing strings for Huffman codes. Theor. Comput. Sci. 410(38–40), 3925–3941 (2009)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Carpi, A., D’Alessandro, F.: Strongly transitive automata and the Černý conjecture. Acta Informatica 46(8), 591–607 (2009)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Černý, J.: Poznámka k homogénnym experimentom s konečnými automatmi. Matematicko-fyzikálny Časopis Slovenskej Akadémie Vied 14(3), 208–216 (1964)Google Scholar
  10. 10.
    Dubuc, L.: Sur les automates circulaires et la conjecture de C̆erný. Informatique Théorique et Appl. 32, 21–34 (1998)MathSciNetGoogle Scholar
  11. 11.
    Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19, 500–510 (1990)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Grech, M., Kisielewicz, A.: The Černý conjecture for automata respecting intervals of a directed graph. Discr. Math. Theor. Comput. Sci. 15(3), 61–72 (2013)MathSciNetMATHGoogle Scholar
  13. 13.
    Gusev, V.: Lower bounds for the length of reset words in Eulerian automata. Int. J. Found. Comput. Sci. 24(2), 251–262 (2013)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Gusev, V.V., Pribavkina, E.V.: Reset thresholds of automata with two cycle lengths. In: Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587, pp. 200–210. Springer, Heidelberg (2014)Google Scholar
  15. 15.
    Kari, J.: Synchronizing finite automata on Eulerian digraphs. Theor. Comput. Sci. 295(1–3), 223–232 (2003)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Kari, J., Volkov, M.V.: Černý’s conjecture and the road coloring problem. In: Handbook of Automata, European Science Foundation (2013)Google Scholar
  17. 17.
    Kisielewicz, A., Kowalski, J., Szykuła, M.: Computing the shortest reset words of synchronizing automata. J. Combin. Optim. 29(1), 88–124 (2015)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Kisielewicz, A., Szykuła, M.: Generating small automata and the Černý conjecture. In: Konstantinidis, S. (ed.) CIAA 2013. LNCS, vol. 7982, pp. 340–348. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Kisielewicz, A., Szykuła, M.: Synchronizing automata with extremal properties. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234, pp. 331–343. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  20. 20.
    Kisielewicz, A., Kowalski, J., Szykula, M.: Experiments with synchronizing automata. In: Han, Y.-S., Salomaa, K. (eds.) CIAA 2016. LNCS, vol. 9705, pp. 176–188. Springer, Heidelberg (2016). doi:10.1007/978-3-319-40946-7_15 CrossRefGoogle Scholar
  21. 21.
    Pin, J.E.: On two combinatorial problems arising from automata theory. In: Proceedings of the International Colloquium on Graph Theory and Combinatorics. North-Holland Mathematics Studies, vol. 75, pp. 535–548 (1983)Google Scholar
  22. 22.
    Rystsov, I.K.: Estimation of the length of reset words for automata with simple idempotents. Cybern. Syst. Anal. 36(3), 339–344 (2000)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Steinberg, B.: The averaging trick and the Černý conjecture. Int. J. Found. Comput. Sci. 22(7), 1697–1706 (2011)CrossRefMATHGoogle Scholar
  24. 24.
    Steinberg, B.: The Černý conjecture for one-cluster automata with prime length cycle. Theor. Comput. Sci. 412(39), 5487–5491 (2011)CrossRefMATHGoogle Scholar
  25. 25.
    Trahtman, A.N.: The C̆erný conjecture for aperiodic automata. Discr. Math. Theor. Comput. Sci. 9(2), 3–10 (2007)MathSciNetMATHGoogle Scholar
  26. 26.
    Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Volkov, M.V.: Synchronizing automata preserving a chain of partial orders. Theor. Comput. Sci. 410(37), 3513–3519 (2009)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Computer ScienceUniversity of WrocławWrocławPoland
  2. 2.Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic

Personalised recommendations