Advertisement

Bispecial Factors in the Brun S-Adic System

  • Sébastien Labbé
  • Julien Leroy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9840)

Abstract

We study the bispecial factors in the S-adic system associated with the Brun Multidimensional Continued Fraction algorithm. More precisely, by describing how strong and weak bispecial words can appear, we get a sub-language of the Brun language for which all bispecial words are neutral.

Keywords

Substitutions Brun Factor complexity Bispecial 

References

  1. 1.
    Akiyama, S., Barge, M., Berthé, V., Lee, J.Y., Siegel, A.: On the Pisot substitution conjecture. Preprint (2014)Google Scholar
  2. 2.
    Arnoux, P., Rauzy, G.: Représentation géométrique de suites de complexité 2n + 1. Bull. Soc. Math. Fr. 119(2), 199–215 (1991)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Avila, A., Delecroix, V.: Some monoids of Pisot matrices. Preprint, June 2015. http://arXiv.org/abs/1506.03692
  4. 4.
    Berthé, V., Bourdon, J., Jolivet, T., Siegel, A.: A combinatorial approach to products of Pisot substitutions. Ergod. Theory Dyn. Syst. First View, 1–38. http://journals.cambridge.org/article_S0143385714001412
  5. 5.
    Berthé, V., Labbé, S.: Factor complexity of \(S\)-adic words generated by the Arnoux-Rauzy-Poincaré algorithm. Adv. Appl. Math. 63, 90–130 (2015)CrossRefzbMATHGoogle Scholar
  6. 6.
    Berthé, V., Rigo, M. (eds.): Combinatorics, Automata and Number Theory, Encyclopedia of Mathematics and its Applications, vol. 135. Cambridge University Press, Cambridge (2010)Google Scholar
  7. 7.
    Berthé, V., Steiner, W., Thuswaldner, J.M.: Geometry, dynamics, and arithmetic of \({S}\)-adic shifts. Preprint (2014). http://arXiv.org/abs/1410.0331
  8. 8.
    Brentjes, A.J.: Multidimensional Continued Fraction Algorithms. Mathematisch Centrum, Amsterdam (1981)zbMATHGoogle Scholar
  9. 9.
    Brun, V.: Algorithmes euclidiens pour trois et quatre nombres. In: Treizième congrès des mathèmaticiens scandinaves, tenu à Helsinki 18–23 août 1957, pp. 45–64. Mercators Tryckeri, Helsinki (1958)Google Scholar
  10. 10.
    Delecroix, V., Hejda, T., Steiner, W.: Balancedness of Arnoux-Rauzy and Brun words. In: Karhumäki, J., Lepistö, A., Zamboni, L. (eds.) WORDS 2013. LNCS, vol. 8079, pp. 119–131. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Durand, F.: Corrigendum and addendum to: “Linearly recurrent subshifts have a finite number of non-periodic subshift factors”. Ergod. Theory Dyn. Syst. 23, 663–669 (2003)MathSciNetGoogle Scholar
  12. 12.
    Klouda, K.: Bispecial factors in circular non-pushy D0L languages. Theoret. Comput. Sci. 445, 63–74 (2012). http://dx.doi.org/10.1016/j.tcs.2012.05.007 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lagarias, J.C.: The quality of the Diophantine approximations found by the Jacobi-Perron algorithm and related algorithms. Monatsh. Math. 115(4), 299–328 (1993). http://dx.doi.org/10.1007/BF01667310 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Morse, M., Hedlund, G.A.: Symbolic Dynamics II. Sturmian Trajectories. Am. J. Math. 62(1), 1–42 (1940). http://www.jstor.org/stable/2371431 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Rauzy, G.: Nombres algébriques et substitutions. Bulletin de la Société Mathématique de France 110, 147–178 (1982)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Schratzberger, B.R.: The quality of approximation of Brun’s algorithm in three dimensions. Monatsh. Math. 134(2), 143–157 (2001). http://dx.doi.org/10.1007/s006050170004 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Schweiger, F.: Multidimensional Continued Fraction. Oxford University Press, New York (2000)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institut de MathématiqueUniversité de LiègeLiègeBelgium

Personalised recommendations