Advertisement

Cathode materials for lithium-ion batteries

  • Christian Graf
Chapter

Abstract

Lithium transition metal compounds are employed as cathode materials. These composites can develop mixed crystals over an ample composition range and can deintercalate lithium ions from the structure during the charging process. The transition metal ions are oxidized because of the charge neutrality and therefore the oxidation state of the transition metal cation is elevated. Lithium is deintercalated while the battery is discharging, which in turn reduces the transition metal ions and decreases the oxidation number.

Bibliography

  1. 1.
    Akimoto J, Gotoh Y, Oosawa Y (1998) J Solid State Chem 141:298CrossRefGoogle Scholar
  2. 2.
    Wang HF, Yang YI, Huang BY, Sadoway DR, Chiang YT (1999) J Electrochem Soc 146:473CrossRefGoogle Scholar
  3. 3.
    Ohzuku T, Brodd RJ (2007) J Power Sources 174:449CrossRefGoogle Scholar
  4. 4.
    Ohzuku T, Ueda A (1994) Solid State Ionics 69:201CrossRefGoogle Scholar
  5. 5.
    Yuan LX et al (2011) Goodenough. Energy Environ Sci 4:269CrossRefGoogle Scholar
  6. 6.
    Wang GX et al (2001) J Power Sources 97−98:298Google Scholar
  7. 7.
    Molenda J, Marzec J (2009) Funct Mater Lett 3:1CrossRefGoogle Scholar
  8. 8.
    Amatucci GG, Tarascon JM, Klein LC (1996) Solid State Ionics 83:167CrossRefGoogle Scholar
  9. 9.
    Breuer H (2000) dtv-Atlas Chemie, Vol. 1, 9th edition. dtv, MünchenGoogle Scholar
  10. 10.
    Dahn JR, Vonsacken U, Michal CA (1990) Solid State Ionics 44:87CrossRefGoogle Scholar
  11. 11.
    Molenda J, Marzec J (2003) Funct Mater Lett 115:115Google Scholar
  12. 12.
    Rougier A, Gravereau P, Delmas C (1996) J Electrochem Soc 143:1168CrossRefGoogle Scholar
  13. 13.
    Pouilliere C, Croguennec L, Biensan P, Willmann P, Delmas C (2000) J Electrochem Soc 147:2061CrossRefGoogle Scholar
  14. 14.
    Z. Lu, Macneil DD, Dahn JR (2004) Electrochem Solid-State Lett 14:A191Google Scholar
  15. 15.
    Naghash AR, Lee JY (2001) Electrochim Acta 45:2293CrossRefGoogle Scholar
  16. 16.
    Park SH, Sun YK, Park KS, Nahm KS, Lee YS, Yoshio M (2002) Electrochim Acta 41:1721CrossRefGoogle Scholar
  17. 17.
    Mishra SK, Ceder G (1999) Phys Rev B 59:6120CrossRefGoogle Scholar
  18. 18.
    Armstrong AR, Bruce PG (1996) Nature 381:499CrossRefGoogle Scholar
  19. 19.
    Ceder G, Van der Ven A (1999) Electrochim Acta 45:131CrossRefGoogle Scholar
  20. 20.
    Makimura Y, Ohzuku T (2003) J Power Sources 119:156CrossRefGoogle Scholar
  21. 21.
    Koyama Y, Tanaka I, Adahi H, Makimura Y, Ohzuku T (2003) J Power Sources 119:644CrossRefGoogle Scholar
  22. 22.
    Hwang BJ, Tsai YW, Carlier D, Ceder G (2003) Chem Mater 15:3676CrossRefGoogle Scholar
  23. 23.
    Wang L, Li J, He X, Pu W, Wan C, Jiang C (2009) J Solid State Electrochem 13:1157CrossRefGoogle Scholar
  24. 24.
    Yoon WS, Paik Y, Yang XQ, Balasubramanian M, McBreen J, Grey CP (2002) Elektrochem Solid-State Lett 5:A263Google Scholar
  25. 25.
    Park OK, Cho Y, Lee S, Yoo H-C, Song H-K, Cho J (2011) Energy Environ Sci 4:1621CrossRefGoogle Scholar
  26. 26.
    Ellis BL, Lee KT, Nazar LF (2010) Chem Mater 22:691CrossRefGoogle Scholar
  27. 27.
    Gnanaraj JS, Pol VG, Gedanken A, Aurbach D (2003) Electrochem Commun 5:940CrossRefGoogle Scholar
  28. 28.
    Thackeray MM, Dekock A, Rossouw MH, Liles D, Bittuhn R, Hoge D (1992) J Electrochem Soc 139:363CrossRefGoogle Scholar
  29. 29.
    Benedek R, Thackeray MM (2006) Eectrochem Solid-State Lett 9:A265CrossRefGoogle Scholar
  30. 30.
    Cho J, Thackeray MM (1999) J Electrochem Soc 146:3577CrossRefGoogle Scholar
  31. 31.
    Cho J (2008) J Mater Chem 18:2257CrossRefGoogle Scholar
  32. 32.
    Thackeray MM, Shao-Horn Y, Kahaian AJ, Kepler KD, Vaughey JT, Hackney SA (1998) Electrochem Solid-State Lett 1:7CrossRefGoogle Scholar
  33. 33.
    Shin YJ, Manthiram A (2994) J Electrochem Soc 151: A208Google Scholar
  34. 34.
    Deng BH, Nakamura H, Yoshio M (2008) J Power Sources 180:864CrossRefGoogle Scholar
  35. 35.
    Xia YG, Zhang Q, Wang HY, Nakamura H, Noguchi H, Yoshio M (2007) Electrochim Acta 52:4708CrossRefGoogle Scholar
  36. 36.
    Kim DK, Muralidharan P, Lee HW, Ruffo R, Yang Y, Chan CK, Peng H, Huggins RA, Cui Y (2008) Nano Lett 8:3948CrossRefGoogle Scholar
  37. 37.
    Liu GQ, Wen L, Liu YM (2010) J Solid-State Electrochem 14:2191CrossRefGoogle Scholar
  38. 38.
    Padhi AK, Nanjundaswamy KS, Goddenough JB (1997) J Electrochem Soc 144:1188CrossRefGoogle Scholar
  39. 39.
    Morgan D, Van der Ven A, Ceder G (2004) Electrochem Solid-State Lett 7:A30CrossRefGoogle Scholar
  40. 40.
    Wang YG, Wang YR, Hosono EJ, Wang KX, Zhou HS (2008) Angew Chem Int Ed 47:7461CrossRefGoogle Scholar
  41. 41.
    Kang B, Ceder G (2009) Nature 458:190CrossRefGoogle Scholar
  42. 42.
    Ravet N, Chouinard Y, Magnan JF, Besner S, Gauthier M, Armand M (2001) J Power Sources 19:503CrossRefGoogle Scholar
  43. 43.
    Koltypin M, Aurbach D, Nazar L, Ellis B (2007) Electrochem Solid-State Lett 10:A40CrossRefGoogle Scholar
  44. 44.
    MacNeil DD, Lu ZH, Chen ZH, Dahn JR (2002) J Power Sources 108:8CrossRefGoogle Scholar
  45. 45.
    Wang DY et al (2009) J Power Sources 189:624CrossRefGoogle Scholar
  46. 46.
    Drezen T, Kwon NH, Miners JH, Poletto L, Graetzel M (2007) J Power Sources 174:949CrossRefGoogle Scholar
  47. 47.
    Yamada A, Takei Y, Koizumi H, Sonoyama N, Kanno R (2006) Chem Mater 18:804CrossRefGoogle Scholar
  48. 48.
    Amine K, Yasuda H, Yamachi M (2000) Electrochem Solid State Lett 3:178CrossRefGoogle Scholar
  49. 49.
    Zhou F, Cococcioni M, Kang K, Ceder G (2004) 6:1144Google Scholar
  50. 50.
    Geoffroy D (2012) PhosphatesGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemische Fabrik Budenheim KGBudenheimGermany

Personalised recommendations