Advertisement

Biokerosene pp 303-324 | Cite as

Algae as a Potential Source of Biokerosene and Diesel – Opportunities and Challenges

  • Dominik Behrendt
  • Christina Schreiber
  • Christian Pfaff
  • Andreas Müller
  • Johan Grobbelaar
  • Ladislav Nedbal
Chapter

Abstract

In times of dwindling petroleum reserves, microalgae may pose an alternate energy resource. Their growth is vast under favorable conditions. However, producing microalgae for energy in an economically as well as ecologically feasible way is a difficult task and the prospects are challenging. The chapter gives an insight into perspectives of growing microalgae as a crop, highlighting some of their exceptional energy storage properties in regard to commercial exploitation. Large scale algae production techniques and concepts up to downstream processes are presented. Today, conversion to fuels is constrained by energy usage and costs – but future combination of fuel production with added value products may improve balances and lower the industrial CO2 footprint. These challenges drive research and industry worldwide to constant improvement, supported by numerous funding opportunities. Microalgae in their tremendous diversity are a young and still very much unexplored crop. It is a challenge worth addressing.

References

  1. [1]
    Knoll AH (2008) Cyanobacterial and earth history. In: Herrero A Flores E (eds) The cyanobacteria: molecular biology, genomics and evolution. Caister Academic Press, Poole, p. 484Google Scholar
  2. [2]
    Brocks JJ, Logan GA, Buick R, Summons RE (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285(5430):1033–1036Google Scholar
  3. [3]
    Demirbas A (2011) Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: a solution to pollution problems. Appl Energ 88(10):3541–3547.MathSciNetGoogle Scholar
  4. [4]
    Sheehan J, Dunahay T, Benemann J, Roessler P (1998) Look back at the U.S. Department of Energy’s Aquatic Species Program: biodiesel from algae; close-out report. Other information: PBD: 1 Jul 1998: Medium: ED; Size: 325 pagesGoogle Scholar
  5. [5]
    Huesemann, M.H., Hausmann, T.S., Bartha, R. et al. Appl Biochem Biotechnol (2009) 157: 507.  https://doi.org/10.1007/s12010-008-8298-9 Google Scholar
  6. [6]
    Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306Google Scholar
  7. [7]
    Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008). Biofuels from microalgae. Biotechnol Prog 24(4):815–820Google Scholar
  8. [8]
    Wijffels RH, Barbosa MJ, Eppink MHM (2010) Microalgae for the production of bulk chemicals and biofuels. Biofuels, Bioprod. Biorefi 4(3):287–295Google Scholar
  9. [9]
    Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant J 54(4):621–639Google Scholar
  10. [10]
    Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production.J Ind Microbiol Biotechnol 36(2):269–274Google Scholar
  11. [11]
    Harwood JL, Jones AL (1989) Lipid Metabolism in Algae. In: Callow JA Advances in botanical research, vol 16. Academic Press, Cambridge, pp 1–53Google Scholar
  12. [12]
    Banerjee A, Sharma R, Chisti Y, Banerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22(3):245–279Google Scholar
  13. [13]
    Li X, Xu H, Wu Q (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98(4):764–771Google Scholar
  14. [14]
    Alabi AO, Bibeau E, Tampier M (2009). Microalgae technologies and processes for biofuels/bioenergy production in British Columbia: current technology, suitability and barriers to implementation. Final report submitted to the British Columbia Innovation CouncilGoogle Scholar
  15. [15]
    Alcántara C, García-Encina PA, Muñoz R (2013) Evaluation of mass and energy balances in the integrated microalgae growth-anaerobic digestion process. Chem Eng J 221(0):238–246Google Scholar
  16. [16]
    Acién FG, Fernández JM, Magán JJ, Molina E (2012) Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol Adv 30(6):1344–1353Google Scholar
  17. [17]
    Batan L, Quinn J, Willson B, Bradley T (2010) Net energy and greenhouse gas emission evaluation of biodiesel derived from microalgae. Environ Sci Technol 44(20):7975–7980Google Scholar
  18. [18]
    Broneske J, Pulz O, Rothe T, Schmidt K, Weidner R (2012) Method for producing biomass and photobioreactor for cultivating phototrophic or mixotrophic organisms or cells. Google patents: DE 102009027175 A1US 20120107919 A1Google Scholar
  19. [19]
    Coustets M, Joubert-Durigneux V, Hérault J, Schoefs B, Blanckaert V, Garnier J-P, Teissié J (2015) Optimization of protein electroextraction from microalgae by a flow process. Bio Electroch 103:74–81Google Scholar
  20. [20]
    Davis RE, Fishman DB, Frank ED, Johnson MC, Jones SB, Kinchin CM, Skaggs RL, Venteris ER, Wigmosta MS (2014) Integrated evaluation of cost, emissions, and resource potential for algal biofuels at the national scale. Environ Sci Technol 48(10):6035–6042Google Scholar
  21. [21]
    Feng Y, Li C, Zhang D (2011) Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresource Technol102(1):101–105Google Scholar
  22. [22]
    Ferreira AF, Ortigueira J, Alves L, Gouveia L, Moura P, Silva C (2013) Biohydrogen production from microalgal biomass: energy requirement, CO2 emissions and scale-up scenarios. Bioresource Technol 144(0):156–164Google Scholar
  23. [23]
    Ferreira AF, Ribeiro LA, Batista AP, Marques PA SS, Nobre BP, Palavra AMF, da Silva PP, Gouveia L, Silva C (2013) A biorefinery from Nannochloropsis sp. microalga – Energy and CO2 emission and economic analyses. Bioresource Technol 138(0):235–244Google Scholar
  24. [24]
    Jorquera O, Kiperstok A, Sales EA, Embiruçu M, Ghirardi ML (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresource Technol 101(4):1406–1413Google Scholar
  25. [25]
    Pienkos PT, Darzins A (2009) The promise and challenges of microalgal-derived biofuels. Biofuels, Bioprod. Bioref. 3(4):431–440Google Scholar
  26. [26]
    Razon LF, Tan RR(2011) Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis. Applied Energ 88(10):3507–3514Google Scholar
  27. [27]
    Rogers JN, Rosenberg JN, Guzman BJ, Oh VH, Mimbela LE, Ghassemi A, Betenbaugh MJ, Oyler GA, Donohue MD (2014) A critical analysis of paddlewheel-driven raceway ponds for algal biofuel production at commercial scales. Algal Res 4:76–88Google Scholar
  28. [28]
    Tredici MR, Bassi N, Prussi M, Biondi N, Rodolfi L,Chini Zittelli G, Sampietro G (2015) Energy balance of algal biomass production in a 1-ha “Green Wall Panel” plant: how to produce algal biomass in a closed reactor achieving a high net energy ratio. Applied Energ 154:1103–1111Google Scholar
  29. [29]
    Xu Z, Baicheng Z, Yiping Z, Zhaoling C, Wei C, Fan O (2002) A simple and low-cost airlift photobioreactor for microalgal mass culture. Biotechnol Lett 24(21):1767–1771Google Scholar
  30. [30]
    Zirbs TAHM (2013) Mikroalgen – Energieträger der Zukunft. Tagungsband HTWG Konstanz 2013:21–27Google Scholar
  31. [31]
    Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters”. J Biotechnol 70(1–3):313–321Google Scholar
  32. [32]
    Guschina I, Harwood J (2009) Algal lipids and effect of the environment on their biochemistry.In: Kainz M Brett MT Arts M (eds) Lipids in aquatic ecosystems. Springer, New York, pp 1–24Google Scholar
  33. [33]
  34. [34]
    Tornabene TG, Holzer G, Peterson SL (1980) Lipid profile of the halophilic alga, Dunaliella salina. Biochem Bioph Res Co 96(3):1349–1356Google Scholar
  35. [35]
    Li Y, Qin JG. (2005) Comparison of growth and lipid content in three Botryococcus braunii strains. J Appl Phycol 17: 551.  https://doi.org/10.1007/s10811-005-9005-7Google Scholar
  36. [36]
    Billmire E, Aaronson S (1976) The secretion of lipids by the freshwater phytoflagellate Ochromonas danica1,2. Limnol Oceanogr 21(1):138–140Google Scholar
  37. [37]
    Griffiths MJ, Harrison ST (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21(5):493–507Google Scholar
  38. [38]
    Lv JM, Cheng LH, Xu XH, Zhang L, Chen HL (2010). Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresour Technol 101(17):6797–6804Google Scholar
  39. [39]
    Fernandes B, Teixeira J, Dragone G, Vicente AA, Kawano S, Bisova K, Pribyl P, Zachleder V, Vitova M (2013) Relationship between starch and lipid accumulation induced by nutrient depletion and replenishment in the microalga Parachlorella kessleri. Bioresour Technol 144:268–274Google Scholar
  40. [40]
    Mizuno Y, Sato A, Watanabe K, Hirata A, Takeshita T, Ota S, Sato N, Zachleder V, Tsuzuki M, Kawano S (2013) Sequential accumulation of starch and lipid induced by sulfur deficiency in Chlorella and Parachlorella species. Bioresour Technol 129:150–155Google Scholar
  41. [41]
    Takeshita T, Ota S, Yamazaki T, Hirata A, Zachleder V, Kawano S (2014) Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions. Bioresour Technol 158:127–134Google Scholar
  42. [42]
    Solovchenko AE (2012) Physiological role of neutral lipid accumulation in eukaryotic microalgae under stresses. Russ J Plant Physl 59(2):167–176Google Scholar
  43. [43]
    Roessler PG (1990) Environmental control of glycerolipid metabolism in microalgae: commercial implications and future research directions. J Phycol 26(3):393–399Google Scholar
  44. [44]
    Solovchenko AE Khozin-Goldberg I Didi-Cohen S Cohen Z Merzlyak MN (2008) Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J Appl Phycol 20(3):245–251Google Scholar
  45. [45]
    Lemoine Y, Schoefs B (2010) Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynth Res 106(1–2):155–177Google Scholar
  46. [46]
    Ben-Amotz A, Avron M (1983) On the factors which determine massive beta-carotene accumulation in the halotolerant alga dunaliella bardawil. Plant Physiol 72(3):593–597Google Scholar
  47. [47]
    Khozin-Goldberg I, Cohen Z (2006) The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67(7):696–701Google Scholar
  48. [48]
    Eixler S, Karsten U, Selig U (2006) Phosphorus storage in Chlorella vulgaris (Trebouxiophyceae, Chlorophyta) cells and its dependence on phosphate supply. Phycologia 45(1):53–60Google Scholar
  49. [49]
    Bidigare RR, Ondrusek ME, Kennicutt MC, Iturriaga R, Harvey HR, Hoham RW, Macko SA (1993) Evidence a photoprotective for secondary carotenoids of snow algae1. J Phycol 29(4):427–434Google Scholar
  50. [50]
    Takagi M, Karseno Yoshida T (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng 101(3):223–226Google Scholar
  51. [51]
    Guckert JB, Cooksey KE (1990) Triglyceride accumulation and fatty acid profile changes in chlorella (Chlorophyta) during high ph-Induced cell cycle inhibition1. J Phycol 26(1):72–79Google Scholar
  52. [52]
    Grobbelaar JU (2013) Inorganic algal nutrition. Handbook of microalgal culture. Wiley, Hoboken, pp 123–133Google Scholar
  53. [53]
    Doucha J, Lívanský K (2012) Production of high-density Chlorella culture grown in fermenters.J Appl Phycol 24(1):35–43Google Scholar
  54. [54]
    Grobbelaar J (2009) Factors governing algal growth in photobioreactors: the “open” versus “closed” debate. J Appl Phycol 21(5):489–492Google Scholar
  55. [55]
    Richmond A (1996) Efficient utilization of high irradiance for production of photoautotropic cell mass: a survey. J Appl Phycol 8(4–5):381–387Google Scholar
  56. [56]
    Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biot 57(3):287–293.Google Scholar
  57. [57]
    Janssen M, Tramper J, Mur LR, Wijffels RH (2003) Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol Bioeng 81(2):193–210Google Scholar
  58. [58]
    Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9(3):165–177Google Scholar
  59. [59]
    Grobbelaar JU (2009) Factors governing algal growth in photobioreactors: the “open” versus “closed” debate. J Appl Phycol21(5):489–492Google Scholar
  60. [60]
    FonSing S, Isdepsky A, Borowitzka M, Moheimani N (2013) Production of biofuels from microalgae. Mitig Adapt Strateg Glob Change 18(1):47–72Google Scholar
  61. [61]
    Doucha J, Lívanský K (2014) High density outdoor microalgal culture. In: Bajpai R, Prokop A, Zappi M (eds) Algal biorefineries. Springer, Dordrecht, pp 147–173Google Scholar
  62. [62]
    Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y (2011) Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresource Technol 102(1):159–165Google Scholar
  63. [63]
    Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N G, Tredici M R (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112Google Scholar
  64. [64]
    Goldman JC. (1979). Outdoor algal mass cultures—II. Photosynthetic yield limitations. Water Res 13(2): 119–136, ISSN 0043-1354, http://dx.doi.org/10.1016/0043-1354(79)90083-6.Google Scholar
  65. [65]
    Grobbelaar J (2012) Microalgae mass culture: the constraints of scaling-up. J Appl Phycol 24(3):315–318Google Scholar
  66. [66]
    Molina Grima E, Belarbi EH, Acién Fernández FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv20(7–8):491–515Google Scholar
  67. [67]
    Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102(1):71–81Google Scholar
  68. [68]
    Milledge JJ, Heaven S (2012) A review of the harvesting of micro-algae for biofuel production. Rev Environ Sci Biotechno 12(2):165–178Google Scholar
  69. [69]
    Prochazkova G, Safarik I, Branyik T (2013) Harvesting microalgae with microwave synthesized magnetic microparticles. Bioresour Technol 130:472–477Google Scholar
  70. [70]
    Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. JRSE 2(1):012701Google Scholar
  71. [71]
    Rawat I, Ranjith Kumar R, Mutanda T, Bux F (2013) Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Applied Energ 103(0):444–467Google Scholar
  72. [72]
    Prabakaran P, Ravindran AD (2011) A comparative study on effective cell disruption methods for lipid extraction from microalgae. Lett Appl Microbiol 53(2):150–154Google Scholar
  73. [73]
    Brown TM, Duan P, Savage PE. (2010). Hydrothermal liquefaction and gasification of nannochloropsis sp. Energ Fuel 24(6): 3639–3646. http://dx.doi.org/10.1021/ef100203u Google Scholar
  74. [74]
    Halim R, Gladman B, Danquah MK, Webley PA (2011) Oil extraction from microalgae for biodiesel production. Bioresource Technol102(1):178–185Google Scholar
  75. [75]
    Jena U, Das K (2011) Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae. Energ Fuel 25(11):5472–5482Google Scholar
  76. [76]
    Cranford RJ, Aravanis AM, Roussis SG (2012) Process for the recovery of oleaginous compounds from biomass, Google Patents: US20120190872 A1 international patents number: WO/2012/015831Google Scholar
  77. [77]
    Lestari S, Mäki-Arvela P, Beltramini J, Lu GQM, Murzin DY (2009) Transforming triglycerides and fatty acids into biofuels. ChemSusChem 2(12):1109–1119Google Scholar
  78. [78]
    Borowitzka MA, Moheimani NR. (2013). Mitig Adapt Strateg Glob Change 18: 13.  https://doi.org/10.1007/s11027-010-9271-9Google Scholar
  79. [79]
    Spruijt J, Schipperus R, Kootstra M, Visser CLM, Parker B (2015) AlgaEconomics: bioeconomic production models of micro-algae and downstream processing to produce bio energy carriers. Public output report of the EnAlgae project, Swansea, June, 67pp:67Google Scholar
  80. [80]
    Mascarelli AL (2009) Algae: fuel of the future? Environ Sci Technol 43(19):7160–7161Google Scholar
  81. [81]
    Slade R, Bauen A (2013) Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenerg 53(0):29–38Google Scholar
  82. [82]
    Moody J W, McGinty CM, Quinn JC (2014). Global evaluation of biofuel potential from microalgae. Proc Natl Acad Sci U S A 111(23):8691–8696Google Scholar
  83. [83]
    Guiry MD (2012) How many species of algae are there? J Phycol 48(5):1057–1063Google Scholar
  84. [84]
    Mutanda T, Ramesh D, Karthikeyan S, Kumari S, Anandraj A, Bux F (2011) Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour Technol 102(1):57–70Google Scholar
  85. [85]
    Hancock JF, Miller AJ (2014) Crop plants: evolution. eLS. Wiley, HobokenGoogle Scholar
  86. [86]
    Li Y, Han D, Hu G, Dauvillee D, Sommerfeld M, Ball S, Hu Q (2010) Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metab Eng 12(4):387–391Google Scholar
  87. [87]
    Li Y, Han D, Hu G, Sommerfeld M, Hu Q (2010) Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol Bioeng 107(2):258–268Google Scholar
  88. [88]
    Lü J, Sheahan C, Fu P (2011) Metabolic engineering of algae for fourth generation biofuels production. Energy Environ Sci 4(7):2451–2466Google Scholar
  89. [89]
    León-Bañares R, González-Ballester D, Galván A, Fernández E (2004) Transgenic microalgae as green cell-factories. Trends Biotechnol 22(1):45–52Google Scholar
  90. [90]
    Chen W, Zhang C, Song L, Sommerfeld M, Hu Q (2009) A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Methods 77(1):41–47Google Scholar
  91. [91]
    Cooper MS, Hardin WR, Petersen TW, Cattolico RA (2010) Visualizing “green oil” in live algal cells. J Biosci Bioeng 109(2):198–201Google Scholar
  92. [92]
    Montero M, Aristizábal M, García Reina G (2011) Isolation of high-lipid content strains of the marine microalga Tetraselmis suecica for biodiesel production by flow cytometry and single-cell sorting. J Appl Phycol 23(6):1053–1057Google Scholar
  93. [93]
    Yen Doan, T-T Obbard JP (2011) Enhanced lipid production in Nannochloropsis sp. using fluorescence-activated cell sorting. GCB Bioenerg 3(3):264–270Google Scholar
  94. [94]
    Samek O, Jonáš A, Pilát Z, Zemánek P, Nedbal L, Tříska J, Kotas P, Trtílek M (2010) Raman Microspectroscopy of Individual Algal Cells: sensing Unsaturation of Storage Lipids in vivo. Sensors 10(9):8635–8651Google Scholar
  95. [95]
    Fratila RM, Gomez MV, Sýkora S, Velders AH (2014) Multinuclear nanoliter one-dimensional and two-dimensional NMR spectroscopy with a single non-resonant microcoil. Nat Commun 5, Article number: 3025.  https://doi.org/10.1038/ncomms4025
  96. [96]
    Batten, D., T. Beer, G. Freischmidt, T. Grant, K. Liffman, D. Paterson, T. Priestley, L. Rye and G. Threlfall (2013). “Using wastewater and high-rate algal ponds for nutrient removal and the production of bioenergy and biofuels.” Water Science and Technology 67(4): 915-924.Google Scholar
  97. [97]
    Brown LM, Zeiler KG (1993) Aquatic biomass and carbon dioxide trapping. Energ Convers Manage 34(9–11):1005–1013Google Scholar
  98. [98]
    Singh U, Ahluwalia AS (2013) Microalgae: a promising tool for carbon sequestration. Mitig Adapt Strateg Glob Change 18(1):73–95Google Scholar
  99. [99]
    Lackner KS (2003) A guide to CO2 sequestration. Science 300(5626):1677–1678.Google Scholar
  100. [100]
    Castillo JF, Merino F, Heussler P. (1980). Production and ecological implications of algal mass culture under Peruvian conditions. In: Shelef G, Soeder CJ (eds) Algae biomass production and use. Project of Microalgae for Human Consumption. Elsevier/North-Holland Biomedical Press, pp. 123-134.Google Scholar
  101. [101]
    Grobbelaar JU, Mohn FH, Soeder CJ (2000) Potential of algal mass cultures to fix CO2 emissions from industrial point sources. Algological Studies 98:169–183Google Scholar
  102. [102]
    Oswald WJ, Gotaas HB (1957). Phtosynthesis in sewage treatment. Trans Am Soc Civ Eng (122):73–105.Google Scholar
  103. [103]
    Green FB,Bernstone L, Lundquist TJ, Muir J Tresan RB, Oswald WJ (1995) Methane fermentation, submerged gas collection, and the fate of carbon in advanced integrated wastewater pond systems. Water Sci Technol 31(12):55–65Google Scholar
  104. [104]
    Oswald WJ (1995) Ponds in the twenty-first century. Water Sci Technol 31(12):1–8Google Scholar
  105. [105]
    Sturm BSM, Lamer SL (2011) An energy evaluation of coupling nutrient removal from wastewater with algal biomass production. Applied Energ 88(10):3499–3506Google Scholar
  106. [106]
    Craggs R, Lundquist T, Benemann J (2013) Wastewater treatment and algal biofuel production. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy, vol 5. Springer, Dordrecht, pp 153–163Google Scholar
  107. [107]
    Elser JJ (2012) Phosphorus: a limiting nutrient for humanity? Curr Opin Biotechnol 23(6):833–838Google Scholar
  108. [108]
    Hinsinger P, Betencourt E, Bernard L, Brauman A, Plassard C, Shen J, Tang X, Zhang F (2011) P for two, sharing a scarce resource: soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiol 156(3):1078–1086Google Scholar
  109. [109]
    Cordell D, White S (2014) Life’s bottleneck: implications of global phosphorus scarcity and pathways for a sustainable food system. Annu Rev Env Resour 39(1):161-188.Google Scholar
  110. [110]
    Bryant HL, Gogichaishvili I, Anderson D, Richardson JW, Sawyer J, Wickersham T, Drewery ML (2012) The value of post-extracted algae residue. Algal Res 1(2):185–193Google Scholar
  111. [111]
    De-Bashan LE, Bashan Y (2004) Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Res 38(19):4222–4246Google Scholar
  112. [112]
    Mulbry W, Westhead EK, Pizarro C, Sikora L (2005). Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer. Bioresource Technol 96(4):451–458Google Scholar
  113. [113]
    Shilton AN, Powell N, Guieysse B (2012) Plant based phosphorus recovery from wastewater via algae and macrophytes. Curr Opin Biotechnol 23(6):884–889Google Scholar
  114. [114]
    Tredici MR. (2010) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1(1):143–162Google Scholar
  115. [115]
    Grobbelaar JU (2013) Mass production of microalgae at optimal photosynthetic rates In: Dubinsky Z (ed) Photosynthesis. InTech, pp. 357-371.Google Scholar
  116. [116]
    Chisti Y, Yan J (2011) Energy from algae: current status and future trends. Appl Energ 88(10):3277–3279Google Scholar
  117. [117]
    Stephens E, Ross IL, Mussgnug JH, Wagner LD, Borowitzka MA, Posten C, Kruse O, Hankamer B (2010) Future prospects of microalgal biofuel production systems. Trends Plant Sci 15(10):554–564Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Dominik Behrendt
    • 1
  • Christina Schreiber
    • 2
  • Christian Pfaff
    • 3
  • Andreas Müller
    • 4
  • Johan Grobbelaar
    • 5
  • Ladislav Nedbal
    • 6
  1. 1.Institute of Bio- and Geosciences IBG-2: Plant SciencesForschungszentrum JülichJülichGermany
  2. 2.Institute of Bio- and Geosciences IBG-2: Plant SciencesForschungszentrum JülichJülichGermany
  3. 3.Institute of Bio- and Geosciences IBG-2: Plant SciencesForschungszentrum JülichJülichGermany
  4. 4.Institute of Bio- and Geosciences IBG-2: Plant SciencesForschungszentrum JülichJülichGermany
  5. 5.University of the Free StateDepartment of Plant SciencesBloemfonteinSouth Africa
  6. 6.Institute of Bio- and Geosciences IBG-2: Plant SciencesForschungszentrum JülichJülichGermany

Personalised recommendations