Advertisement

The Proper Treatment of Linguistic Ambiguity in Ordinary Algebra

  • Christian Wurm
  • Timm Lichte
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9804)

Abstract

We present a first algebraic approximation to the semantic content of linguistic ambiguity. Starting from the class of ordinary Boolean algebras, we add to it an ambiguity operator \(\Vert \) and a small set of axioms which we think are correct for linguistic ambiguity beyond doubt. We then show some important, non-trivial results that follow from this axiomatization, which turn out to be surprising and not fully satisfying from a linguistic point of view. Therefore, we also sketch promising algebraic alternatives.

References

  1. 1.
    Asher, N., Denis, P.: Lexical ambiguity as type disjunction. In: Bouillon, P., Kanzaki, K. (eds.) Proceedings of the International Workshop on Generative Approaches to the Lexicon (GL2005), Genève, Switzerland, pp. 10–17 (2005)Google Scholar
  2. 2.
    Cooper, R., Crouch, R., van Eijck, J., Fox, C., van Genabith, J., Jaspars, J., Kamp, H., Milward, D., Pinkal, M., Poesio, M., Pulman, S. (eds.) Using the framework. The FraCaS Consortium, Technical report, FraCaS deliverable D-16 (1996)Google Scholar
  3. 3.
    Ernst, T.: Grist for the linguistic mill: idioms and ‘extra’ adjectives. J. Linguist. Res. 1, 51–68 (1981)Google Scholar
  4. 4.
    Husserl, E.: V. logische Untersuchung: Über intentionale Erlebnisse und ihre “Inhalte”. No. 290 in Philosophische Bibliothek, Meiner, Hamburg (1975)Google Scholar
  5. 5.
    Kracht, M.: Mathematics of Language. Mouton de Gruyter, Berlin (2003)CrossRefzbMATHGoogle Scholar
  6. 6.
    Maddux, R.: Relation Algebras. Elsevier, Amsterdam (2006)zbMATHGoogle Scholar
  7. 7.
    Peterson, R.R., Burgess, C.: Syntactic and semantic processing during idiom comprehension: neurolinguistic and psycholinguistic dissociations. In: Cacciari, C., Tabossi, P. (eds.) Idioms: Processing, Structure, and Interpretation, pp. 201–225. Lawrence Erlbaum, Hillsdale (1993)Google Scholar
  8. 8.
    Pinkal, M.: Logic and Lexicon: The Semantics of the Indefinite. Kluwer, Dordrecht (1995)CrossRefGoogle Scholar
  9. 9.
    Pinkal, M.: On semantic underspecification. In: Bunt, H., Muskens, R. (eds.) Computing Meaning, vol. 1, pp. 33–55. Springer, Dordrecht (1999)CrossRefGoogle Scholar
  10. 10.
    Poesio, M.: Semantic ambiguity and perceived ambiguity. In: van Deemter, K., Peters, S. (eds.) Semantic Ambiguity and Underspecification, pp. 159–201. CSLI Publications, Stanford (1994)Google Scholar
  11. 11.
    Stallard, D.: The logical analysis of lexical ambiguity. In: Proceedings of the 25th Annual Meeting on Association for Computational Linguistics (ACL 1987), pp. 179–185 (1987)Google Scholar
  12. 12.
    Wittenberg, E., Jackendoff, R.S., Kuperberg, G., Paczynski, M., Snedeker, J., Wiese, H.: The processing and representation of light verb constructions. In: Bachrach, A., Roy, I., Stockall, L. (eds.) Structuring the Argument. John Benjamins, Amsterdam (2014)Google Scholar
  13. 13.
    Wittgenstein, L.: Philosophische Untersuchungen. No. 1372 in Bibliothek Suhrkamp, Suhrkamp, Frankfurt am Main, 1. edn. (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.University of DüsseldorfDüsseldorfGermany

Personalised recommendations