# A Single Movement Normal Form for Minimalist Grammars

Conference paper

First Online:

## Abstract

Movement is the locus of power in Minimalist grammars (MGs) but also their primary source of complexity. In order to simplify future analysis of the formalism, we prove that every MG can be converted into a strongly equivalent MG where every phrase moves at most once. The translation procedure is implemented via a deterministic linear tree transduction on the derivation tree language and induces at most a linear blow-up in the size of the lexicon.

## Keywords

Minimalist grammars Linear tree transductions Derivation trees Lexical blow-up Successive cyclic movement## Supplementary material

## References

- 1.Abels, K.: Successive cyclicity, anti-locality, and adposition stranding. Ph.D. thesis, University of Conneticut (2003)Google Scholar
- 2.Baker, B.S.: Composition of top-down and bottom-up tree transductions. Inf. Control
**41**, 186–213 (1979)MathSciNetCrossRefMATHGoogle Scholar - 3.Engelfriet, J.: Bottom-up and top-down tree transformations – a comparison. Math. Syst. Theor.
**9**, 198–231 (1975)MathSciNetCrossRefMATHGoogle Scholar - 4.Graf, T.: Closure properties of minimalist derivation tree languages. In: Pogodalla, S., Prost, J.-P. (eds.) Logical Aspects of Computational Linguistics. LNCS, vol. 6736, pp. 96–111. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- 5.Graf, T.: Locality and the complexity of minimalist derivation tree languages. In: Groote, P., Nederhof, M.-J. (eds.) Formal Grammar 2010/2011. LNCS, vol. 7395, pp. 208–227. Springer, Heidelberg (2012)CrossRefGoogle Scholar
- 6.Graf, T.: Movement-generalized minimalist grammars. In: Béchet, D., Dikovsky, A. (eds.) Logical Aspects of Computational Linguistics. LNCS, vol. 7351, pp. 58–73. Springer, Heidelberg (2012)CrossRefGoogle Scholar
- 7.Graf, T.: Local and transderivational constraints in syntax and semantics. Ph.D. thesis, UCLA (2013)Google Scholar
- 8.Graf, T., Heinz, J.: Commonality in disparity: the computational view of syntax and phonology. In: Slides of a talk given at GLOW 2015, 18 April, Paris, France (2015)Google Scholar
- 9.Harkema, H.: A characterization of minimalist languages. In: de Groote, P., Morrill, G., Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099, pp. 193–211. Springer, Heidelberg (2001)CrossRefGoogle Scholar
- 10.Heinz, J., Rawal, C., Tanner, H.G.: Tier-based strictly local constraints in phonology. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, pp. 58–64 (2011)Google Scholar
- 11.Kobele, G.M.: Generating copies: an investigation into structural identity in language and grammar. Ph.D. thesis, UCLA (2006)Google Scholar
- 12.Kobele, G.M.: Without remnant movement, MGs are context-free. In: Ebert, C., Jäger, G., Michaelis, J. (eds.) MOL 10/11. LNCS, vol. 6149, pp. 160–173. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 13.Kobele, G.M.: Minimalist tree languages are closed under intersection with recognizable tree languages. In: Pogodalla, S., Prost, J.-P. (eds.) Logical Aspects of Computational Linguistics. LNCS, vol. 6736, pp. 129–144. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- 14.Kobele, G.M., Retoré, C., Salvati, S.: An automata-theoretic approach to minimalism. In: Rogers, J., Kepser, S. (eds.) Model Theoretic Syntax at 10, pp. 71–80 (2007)Google Scholar
- 15.Michaelis, J.: Transforming linear context-free rewriting systems into minimalist grammars. In: de Groote, P., Morrill, G., Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099, pp. 228–244. Springer, Heidelberg (2001)CrossRefGoogle Scholar
- 16.Ristad, E.S.: Computational structure of human languages. Ph.D. thesis, MIT (1990)Google Scholar
- 17.Stabler, E.P.: Derivational minimalism. In: Retoré, C. (ed.) LACL 1996. LNCS (LNAI), vol. 1328, pp. 68–95. Springer, Heidelberg (1997)CrossRefGoogle Scholar
- 18.Stabler, E.P.: Computational perspectives on minimalism. In: Boeckx, C. (ed.) Oxford Handbook of Linguistic Minimalism, pp. 617–643. Oxford University Press, Oxford (2011)Google Scholar
- 19.Stabler, E.P.: Bayesian, minimalist, incremental syntactic analysis. Top. Cogn. Sci.
**5**, 611–633 (2013)CrossRefGoogle Scholar

## Copyright information

© Springer-Verlag Berlin Heidelberg 2016