A Subfield Lattice Attack on Overstretched NTRU Assumptions

Cryptanalysis of Some FHE and Graded Encoding Schemes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9814)

Abstract

The subfield attack exploits the presence of a subfield to solve overstretched versions of the NTRU assumption: norming the public key h down to a subfield may lead to an easier lattice problem and any sufficiently good solution may be lifted to a short vector in the full NTRU-lattice. This approach was originally sketched in a paper of Gentry and Szydlo at Eurocrypt’02 and there also attributed to Jonsson, Nguyen and Stern. However, because it does not apply for small moduli and hence NTRUEncrypt, it seems to have been forgotten. In this work, we resurrect this approach, fill some gaps, analyze and generalize it to any subfields and apply it to more recent schemes. We show that for significantly larger moduli — a case we call overstretched — the subfield attack is applicable and asymptotically outperforms other known attacks.

This directly affects the asymptotic security of the bootstrappable homomorphic encryption schemes LTV and YASHE which rely on a mildly overstretched NTRU assumption: the subfield lattice attack runs in sub-exponential time \(2^{O(\lambda /\log ^{1/3}\lambda )}\) invalidating the security claim of \(2^{\varTheta (\lambda )}\). The effect is more dramatic on GGH-like Multilinear Maps: this attack can run in polynomial time without encodings of zero nor the zero-testing parameter, yet requiring an additional quantum step to recover the secret parameters exactly.

We also report on practical experiments. Running LLL in dimension 512 we obtain vectors that would have otherwise required running BKZ with block-size 130 in dimension 8192. Finally, we discuss concrete aspects of this attack, the condition on the modulus q to guarantee full immunity, discuss countermeasures and propose open questions.

Keywords

Subfield lattice attack Overstretched NTRU FHE Graded encoding schemes 

References

  1. [ABC+]
    Albrecht, M., Bai, S., Cadé, D., Pujol, X., Stehlé, D.: fpLLL-4.0, a floating-point LLL implementation. https://github.com/dstehle/fplll
  2. [ACLL15]
    Albrecht, M.R., Cocis, C., Laguillaumie, F., Langlois, A.: Implementing candidate graded encoding schemes from ideal lattices. In: Iwata, T., et al. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 752–775. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48800-3_31 CrossRefGoogle Scholar
  3. [BCLvV16]
    Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU prime. Cryptology ePrint Archive, Report 2016/461 (2016). http://eprint.iacr.org/
  4. [Ber14]
    Bernstein, D.: A subfield-logarithm attack against ideal lattices, Febuary 2014. http://blog.cr.yp.to/20140213-ideal.html
  5. [BF14]
    Biasse, J.-F., Fieker, C.: Subexponential class group, unit group computation in large degree number fields. LMS J. Comput. Math. 17(Suppl. A), 385–403 (2014)MathSciNetCrossRefMATHGoogle Scholar
  6. [Bia14]
    Biasse, J.-F.: Subexponential time relations in the class group of large degree number fields. Adv. Math. Commun. 8(4), 407–425 (2014)MathSciNetCrossRefMATHGoogle Scholar
  7. [BLLN13]
    Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based fully homomorphic encryption scheme. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 45–64. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. [BS16]
    Biasse, J.-F., Song, F.: Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields. In: 27th ACM-SIAM Symposium on Discrete Algorithms (SODA 2016) (2016)Google Scholar
  9. [BV11]
    Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: Ostrovsky, R. (ed.) 52nd FOCS, pp. 97–106. IEEE Computer Society Press, October 2011Google Scholar
  10. [CDPR16]
    Cramer, R., Ducas, L., Peikert, C., Regev, O.: Recovering short generators of principal ideals in cyclotomic rings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 559–585. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49896-5_20 CrossRefGoogle Scholar
  11. [CG13]
    Canetti, R., Garay, J.A. (eds.): CRYPTO 2013. LNCS, vol. 8042. Springer, Heidelberg (2013)MATHGoogle Scholar
  12. [CGS14]
    Campbell, P., Groves, M., Shepherd, D.: Soliloquy: a cautionary tale. In: ETSI 2nd Quantum-Safe Crypto Workshop (2014). http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
  13. [CIV16]
    Castryck, W., Iliashenko, I., Vercauteren, F.: Provably weak instances of ring-LWE revisited. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 147–167. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49890-3_6 CrossRefGoogle Scholar
  14. [CJL16]
    Cheon, J.H., Jeong, J., Lee, C.: An algorithm for NTRU problems and cryptanalysis of the GGH multilinear map without an encoding of zero. Cryptology ePrint Archive, Report 2016/139 (2016). http://eprint.iacr.org/
  15. [CLS15]
    Chen, H., Lauter, K., Stange, K.E.: Attacks on search RLWE. Cryptology ePrint Archive, Report 2015/971 (2015). http://eprint.iacr.org/2015/971
  16. [CLT13]
    Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers. In: Canetti, R., Garay, J.A. (eds.) [CG13], pp. 476–493Google Scholar
  17. [CN11]
    Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. [CS97]
    Coppersmith, D., Shamir, A.: Lattice attacks on NTRU. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 52–61. Springer, Heidelberg (1997)Google Scholar
  19. [CS15]
    Costache, A., Smart, N.P.: Which ring based somewhat homomorphic encryption scheme is best? Cryptology ePrint Archive, Report 2015/889 (2015). http://eprint.iacr.org/2015/889
  20. [DDLL13]
    Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) [CG13], pp. 40–56Google Scholar
  21. [Dev15]
    The Sage Developers: Sage Mathematics Software (2015). http://www.sagemath.org
  22. [DHS15]
    Doröz, Y., Yin, H., Sunar, B.: Homomorphic AES evaluation using the modified LTV scheme. Des. Codes Crypt. 80(2), 333–358 (2016). http://dx.doi.org/10.1007/s10623-015-0095-1 MathSciNetCrossRefGoogle Scholar
  23. [EHKS14]
    Eisenträger, K., Hallgren, S., Kitaev, A., Song, F.: A quantum algorithm for computing the unit group of an arbitrary degree number field. In: Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pp. 293–302. ACM (2014)Google Scholar
  24. [EHL14]
    Eisenträger, K., Hallgren, S., Lauter, K.: Weak instances of PLWE. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 183–194. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  25. [ELOS15]
    Elias, Y., Lauter, K.E., Ozman, E., Stange, K.E.: Provably weak instances of ring-LWE. In: Gennaro, R., Robshaw, M. (eds.) [GR15], pp. 63–92Google Scholar
  26. [FM14]
    Ferraguti, A., Micheli, G.: On the Mertens-Cesàro theorem for number fields. Bull. Aust. Math. Soc. 93(2), 199–210 (2016). doi:10.1017/S0004972715001288. http://journals.cambridge.org/article_S0004972715001288 MathSciNetCrossRefMATHGoogle Scholar
  27. [Gen01]
    Gentry, C.: Key recovery and message attacks on NTRU-composite. In: Pfitzmann, B. (ed.) [Pfi01], pp. 182–194Google Scholar
  28. [GGH13a]
    Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  29. [GGH+13b]
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press, October 2013Google Scholar
  30. [GN08]
    Gama, N., Nguyen, P.Q.: Finding short lattice vectors within Mordell’s inequality. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 207–216. ACM Press, May 2008Google Scholar
  31. [GR15]
    Gennaro, R., Robshaw, M. (eds.): CRYPTO 2015. LNCS, vol. 9215. Springer, Heidelberg (2015)MATHGoogle Scholar
  32. [GS02]
    Gentry, C., Szydlo, M.: Cryptanalysis of the revised NTRU signature scheme. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 299–320. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  33. [HG07]
    Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-middle attack against NTRU. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 150–169. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  34. [HHGP+03]
    Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.: NTRUSIGN: digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  35. [HJ15]
    Hu, Y., Jia, H.: Cryptanalysis of GGH map. Cryptology ePrint Archive, Report 2015/301 (2015). http://eprint.iacr.org/2015/301
  36. [HPS96]
    Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a new high speed public key cryptosystem. In: Draft Distributed at Crypto 1996 (1996). http://web.securityinnovation.com/hubfs/files/ntru-orig.pdf
  37. [HPS98]
    Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  38. [HPS01]
    Hoffstein, J., Pipher, J., Silverman, J.H.: NSS: an NTRU lattice-based signature scheme. In: Pfitzmann, B. (ed.) [Pfi01], pp. 211–228Google Scholar
  39. [HPS11]
    Hanrot, G., Pujol, X., Stehlé, D.: Analyzing blockwise lattice algorithms using dynamical systems. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 447–464. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  40. [HPS+15]
    Hoffstein, J., Pipher, J., Schanck, J.M., Silverman, J.H., Whyte, W., Zhang, Z.: Choosing parameters for NTRUEncrypt. Cryptology ePrint Archive, Report 2015/708 (2015). http://eprint.iacr.org/2015/708
  41. [HSW06]
    Hoffstein, J., Silverman, J.H., Whyte, W.: Meet-in-the-middle attack on an ntru private key, 2006. Technical report, NTRU Cryptosystems, Report #04, July 2006. http://www.ntru.com
  42. [HT15]
    Hauteville, A., Tillich, J.-P.: New algorithms for decoding in the rank metric and an attack on the LRPC cryptosystem. In: IEEE International Symposium on Information Theory, ISIT 2015, pp. 2747–2751 (2015)Google Scholar
  43. [KF15]
    Kirchner, P., Fouque, P.-A.: An improved BKW algorithm for LWE with applications to cryptography and lattices. In: Gennaro, R., Robshaw, M. (eds.) [GR15], pp. 43–62Google Scholar
  44. [LJ14]
    Löndahl, C., Johansson, T.: Improved algorithms for finding low-weight polynomial multiples in \(f_{2}[x]\) and some cryptographic applications. Des. Codes Crypt. 73(2), 625–640 (2014)CrossRefMATHGoogle Scholar
  45. [LLL82]
    Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261(4), 515–534 (1982)MathSciNetCrossRefMATHGoogle Scholar
  46. [LN14]
    Lepoint, T., Naehrig, M.: A comparison of the homomorphic encryption schemes \(\sf {FV}\) and \(\sf {YASHE}\). In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT. LNCS, vol. 8469, pp. 318–335. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  47. [Loi14]
    Loidreau, P.: On cellular codes and their cryptographic applications. In: ACCT, Fourteenth International Workshop on Algebraic and Combinatorial Coding Theory, pp. 234–239 (2014)Google Scholar
  48. [Lov87]
    Lovasz, L.: An Algorithmic Theory of Numbers, Graphs and Convexity. CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (1987)MATHGoogle Scholar
  49. [LPR10]
    Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  50. [LS14]
    Lenstra, H.W., Silverberg, A.: Revisiting the Gentry-Szydlo algorithm. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 280–296. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  51. [LSS14]
    Langlois, A., Stehlé, D., Steinfeld, R.: GGHLite: more efficient multilinear maps from ideal lattices. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 239–256. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  52. [LTV12]
    López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: Karloff, H.J., Pitassi, T. (eds.) 44th ACM STOC, pp. 1219–1234. ACM Press, May 2012Google Scholar
  53. [Mic02]
    Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-way functions from worst-case complexity assumptions. In: 43rd FOCS, pp. 356–365. IEEE Computer Society Press, November 2002Google Scholar
  54. [Pei16]
    Peikert, C.: How (not) to instantiate ring-LWE. Cryptology ePrint Archive, Report 2016/351 (2016). http://eprint.iacr.org/
  55. [Pfi01]
    Pfitzmann, B. (ed.): EUROCRYPT 2001. LNCS, vol. 2045. Springer, Heidelberg (2001)MATHGoogle Scholar
  56. [Pol74]
    Pollard, J.M.: Theorems on factorization and primality testing. In: Math-ematical Proceedings of the Cambridge Philosophical Society, vol. 76, no. 03, pp. 521–528 (1974)Google Scholar
  57. [Sam70]
    Samuel, P.: Algebraic Theory of Numbers. Hermann, Paris (1970)MATHGoogle Scholar
  58. [Sch87]
    Schnorr, C.-P.: A hierarchy of polynomial time lattice basis reduction algorithms. Theor. Comput. Sci. 53, 201–224 (1987)MathSciNetCrossRefMATHGoogle Scholar
  59. [Sit10]
    Sittinger, B.D.: The probability that random algebraic integers are relatively r-prime. J. Number Theory 130(1), 164–171 (2010)MathSciNetCrossRefMATHGoogle Scholar
  60. [SS11]
    Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  61. [SSTX09]
    Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  62. [Was97]
    Washington, L.C.: Introduction to Cyclotomic Fields. Graduate Texts in Mathematics. Springer, New York (1997)CrossRefMATHGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2016

Authors and Affiliations

  1. 1.Information Security Group, Royal HollowayUniversity of LondonLondonUK
  2. 2.ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, INRIA, UCBL)LyonFrance
  3. 3.Cryptology GroupCWIAmsterdamThe Netherlands

Personalised recommendations