New Insights on AES-Like SPN Ciphers

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9814)

Abstract

It has been proved in Eurocrypt 2016 by Sun et al. that if the details of the S-boxes are not exploited, an impossible differential and a zero-correlation linear hull can extend over at most 4 rounds of the AES. This paper concentrates on distinguishing properties of AES-like SPN ciphers by investigating the details of both the underlying S-boxes and the MDS matrices, and illustrates some new insights on the security of these schemes. Firstly, we construct several types of 5-round zero-correlation linear hulls for AES-like ciphers that adopt identical S-boxes to construct the round function and that have two identical elements in a column of the inverse of their MDS matrices. We then use these linear hulls to construct 5-round integrals provided that the difference of two sub-key bytes is known. Furthermore, we prove that we can always distinguish 5 rounds of such ciphers from random permutations even when the difference of the sub-keys is unknown. Secondly, the constraints for the S-boxes and special property of the MDS matrices can be removed if the cipher is used as a building block of the Miyaguchi-Preneel hash function. As an example, we construct two types of 5-round distinguishers for the hash function Whirlpool. Finally, we show that, in the chosen-ciphertext mode, there exist some nontrivial distinguishers for 5-round AES. To the best of our knowledge, this is the longest distinguisher for the round-reduced AES in the secret-key setting. Since the 5-round distinguisher for the AES can only be constructed in the chosen-ciphertext mode, the security margin for the round-reduced AES under the chosen-plaintext attack may be different from that under the chosen-ciphertext attack.

Keywords

Distinguishinger AES Whirlpool Zero correlation linear Integral 

References

  1. 1.
    Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mendel, F., Mennink, B., Mouha, N., Wang, Q., Yasuda, K.: PRIMATEs v1.02 Submission to the CAESAR Competition. http://competitions.cr.yp.to/round2/primatesv102.pdf
  2. 2.
    Barreto, P., Rijmen, V.: NESSIE proposal: Whirlpool (2000). https://www.cosic.esat.kuleuven.be/nessie/
  3. 3.
    Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31 rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)Google Scholar
  4. 4.
    Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard. Springer, New York (1993)CrossRefMATHGoogle Scholar
  5. 5.
    Biryukov, A., Khovratovich, D.: PAEQ v1. http://competitions.cr.yp.to/round1/paeqv1.pdf
  6. 6.
    Biryukov, A., Shamir, A.: Structural cryptanalysis of SASAS. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 394–405. Springer, Heidelberg (2001)Google Scholar
  7. 7.
    Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 344–371. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Bogdanov, A., Leander, G., Nyberg, K., Wang, M.: Integral and multidimensional linear distinguishers with correlation zero. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 244–261. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Bogdanov, A., Rijmen, V.: Linear hulls with correlation zero and linear cryptanalysis of block ciphers. Des. Codes Crypt. 70(3), 369–383 (2014)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    CAESAR: Competition for Authenticated Encryption: Security, Applicability, and Robustness. http://competitions.cr.yp.to/caesar.html
  11. 11.
    Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher SQUARE. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  12. 12.
    Daemen, J., Rijmen, V.: The Design of Rijndael: AES-the Advanced Encryption Standard. Springer, Heidelberg (2002)CrossRefMATHGoogle Scholar
  13. 13.
    Datta, N., Nandi, M.: ELmD v2.0. http://competitions.cr.yp.to/round2/elmdv20.pdf
  14. 14.
    Demirci, H., Selçuk, A.A.: A meet-in-the-middle attack on 8-round AES. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 116–126. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Demirci, H., Taşkın, I., Çoban, M., Baysal, A.: Improved meet-in-the-middle attacks on AES. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 144–156. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Derbez, P., Fouque, P.-A., Jean, J.: Improved key recovery attacks on reduced-round AES in the single-key setting. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 371–387. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting, D.L.: Improved cryptanalysis of Rijndael. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 213–230. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Fouque, P.-A., Jean, J., Peyrin, T.: Structural evaluation of AES and chosen-key distinguisher of 9-round AES-128. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 183–203. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Gilbert, H.: A simplified representation of AES. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 200–222. Springer, Heidelberg (2014)Google Scholar
  20. 20.
    Gilbert, H., Minier, M.: A collision attack on 7 rounds of Rijndael. In: AES Candidate Conference, pp. 230–241 (2000)Google Scholar
  21. 21.
  22. 22.
    Hatano, Y., Sekine, H., Kaneko, T.: Higher order differential attack of camellia(II). In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 129–146. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  23. 23.
    Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  24. 24.
    Knudsen, L.R.: DEAL – a 128-bit block cipher. Technical report, Department of Informatics, University of Bergen, Norway (1998)Google Scholar
  25. 25.
    Knudsen, L.R., Rijmen, V.: Known-key distinguishers for some block ciphers. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Knudsen, L.R., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  27. 27.
    Lai, X.: Higher order derivatives and differential cryptanalysis. In: Blahut, R.E., Costello Jr., D.J., Maurer, U., Mittelholzer, T. (eds.) Communications and Cryptography: Two Sides of One Tapestry. The Springer International Series in Engineering and Computer Science, vol. 276, pp. 227–233. Springer, New York (1994)CrossRefGoogle Scholar
  28. 28.
    Lamberger, M., Mendel, F., Schläffer, M., Rechberger, C., Rijmen, V.: The rebound attack and subspace distinguishers: application to whirlpool. J. Cryptol. (JOC) 28(2), 257–296 (2015)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Li, P., Sun, B., Li, C.: Integral cryptanalysis of ARIA. In: Bao, F., Yung, M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 1–14. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  30. 30.
    Lucks, S.: The saturation attack - a bait for twofish. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 1–15. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  31. 31.
    Lu, J., Dunkelman, O., Keller, N., Kim, J.-S.: New impossible differential attacks on AES. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 279–293. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  32. 32.
    Mala, H., Dakhilalian, M., Rijmen, V., Modarres-Hashemi, M.: Improved impossible differential cryptanalysis of 7-round AES-128. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 282–291. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  33. 33.
    Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)Google Scholar
  34. 34.
    Phan, R.: Impossible differential cryptanalysis of 7-round Advanced Encryption Standard (AES). Inf. Process. Lett. 91(1), 33–38 (2004)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Sun, B., Li, R., Qu, L., Li, C.: SQUARE attack on block ciphers with low algebraic degree. Sci. China Inf. Sci. 53(10), 1988–1995 (2010)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Sun, B., Liu, M., Guo, J., Rijmen, V., Li, R.: Provable security evaluation of structures against impossible differential and zero correlation linear cryptanalysis. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 196–213. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49890-3_8 CrossRefGoogle Scholar
  37. 37.
    Sun, B., Liu, Z., Rijmen, V., Li, R., Cheng, L., Wang, Q., Alkhzaimi, H., Li, C.: Links among impossible differential, integral and zero correlation linear cryptanalysis. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 95–115. Springer, Heidelberg (2015)Google Scholar
  38. 38.
    Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer, Heidelberg (2015)Google Scholar
  39. 39.
    Todo, Y.: Integral cryptanalysis on full MISTY1. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 413–432. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  40. 40.
    Wu, H., Preneel, B.: A fast authenticated encryption algorithm. http://competitions.cr.yp.to/round1/aegisv1.pdf

Copyright information

© International Association for Cryptologic Research 2016

Authors and Affiliations

  1. 1.College of ScienceNational University of Defense TechnologyChangshaPeople’s Republic of China
  2. 2.State Key Laboratory of CryptologyBeijingPeople’s Republic of China
  3. 3.Nanyang Technological UniversityCentral AreaSingapore
  4. 4.State Key Laboratory of Information Security, Institute of Information EngineeringChinese Academy of SciencesBeijingPeople’s Republic of China
  5. 5.Department of Electrical Engineering (ESAT)KU Leuven and iMindsLeuvenBelgium

Personalised recommendations