Advertisement

Adaptively Secure Garbled Circuits from One-Way Functions

  • Brett Hemenway
  • Zahra Jafargholi
  • Rafail Ostrovsky
  • Alessandra Scafuro
  • Daniel Wichs
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9816)

Abstract

A garbling scheme is used to garble a circuit C and an input x in a way that reveals the output C(x) but hides everything else. In many settings, the circuit can be garbled off-line without strict efficiency constraints, but the input must be garbled very efficiently on-line, with much lower complexity than evaluating the circuit. Yao’s garbling scheme [31] has essentially optimal on-line complexity, but only achieves selective security, where the adversary must choose the input x prior to seeing the garbled circuit. It has remained an open problem to achieve adaptive security, where the adversary can choose x after seeing the garbled circuit, while preserving on-line efficiency.

In this work, we modify Yao’s scheme in a way that allows us to prove adaptive security under one-way functions. In our main instantiation we achieve on-line complexity only proportional to the width w of the circuit. Alternatively we can also get an instantiation with on-line complexity only proportional to the depth d (and the output size) of the circuit, albeit incurring in a \(2^{O(d)}\) security loss in our reduction. More broadly, we relate the on-line complexity of adaptively secure garbling schemes in our framework to a certain type of pebble complexity of the circuit. As our main tool, of independent interest, we develop a new notion of somewhere equivocal encryption, which allows us to efficiently equivocate on a small subset of the message bits.

Keywords

Adaptive security Garbled circuits Online/offline two-party computation 

References

  1. 1.
    Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  2. 2.
    Ananth, P., Sahai, A.: Functional encryption for turing machines. Cryptology ePrint Archive, Report 2015/776 (2015). http://eprint.iacr.org/
  3. 3.
    Applebaum, B.: Key-dependent message security: generic amplification and completeness. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 527–546. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Applebaum, B.: Bootstrapping obfuscators via fast pseudorandom functions. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 162–172. Springer, Heidelberg (2014)Google Scholar
  5. 5.
    Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC\(^0\). In: 45th FOCS, pp. 166–175. IEEE Computer Society Press, October 2004Google Scholar
  6. 6.
    Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing polynomials and their applications. In: 20th Annual IEEE Conference on Computational Complexity (CCC 2005), San Jose, CA, USA, 11–15 June 2005, pp. 260–274. IEEE Computer Society (2005)Google Scholar
  7. 7.
    Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to soundness: efficient verification via secure computation. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 152–163. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Applebaum, B., Ishai, Y., Kushilevitz, E., Waters, B.: Encoding functions with constant online rate or how to compress garbled circuits keys. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 166–184. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded key-dependent message security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 423–444. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 398–415. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively secure garbling with applications to one-time programs and secure outsourcing. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 134–153. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: ACM CCS 2012, pp. 784–796. ACM Press, October 2012Google Scholar
  13. 13.
    Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  14. 14.
    Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367. Springer, Heidelberg (2015)Google Scholar
  15. 15.
    Garay, J.A., Wichs, D., Zhou, H.-S.: Somewhat non-committing encryption and efficient adaptively secure oblivious transfer. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 505–523. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 640–658. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  18. 18.
    Goldreich, O., Goldwasser, S., Micali, S.: On the cryptographic applications of random functions. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 276–288. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  19. 19.
    Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled circuits and succinct functional encryption. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 555–564. ACM Press, June 2013Google Scholar
  20. 20.
    Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptography on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 308–326. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Hemenway, B., Jafargholi, Z., Ostrovsky, R., Scafuro, A., Wichs, D.: Adaptively secure garbled circuits from one-way functions. IACR Cryptology ePrint Archive 2015:1250 (2015)Google Scholar
  24. 24.
    Hubacek, P., Wichs, D.: On the communication complexity of secure function evaluation with long output. In: ITCS 2015, pp. 163–172. ACM, January 2015Google Scholar
  25. 25.
    Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with applications to round-efficient secure computation. In: 41st Annual Symposium on Foundations of Computer Science, FOCS 2000, Redondo Beach, California, USA, 12–14 November 2000, pp. 294–304 (2000)Google Scholar
  26. 26.
    Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect randomizing polynomials. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  27. 27.
    Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party computation. J. Cryptology 22(2), 161–188 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Lindell, Y., Riva, B.: Cut-and-choose yao-based secure computation in the online/offline and batch settings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 476–494. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  29. 29.
    Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs: the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 111–126. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  30. 30.
    Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public keys. In: ACM CCS 2010, pp. 463–472. ACM Press, October 2010Google Scholar
  31. 31.
    Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: 23rd FOCS, pp. 160–164. IEEE Computer Society Press, November 1982Google Scholar
  32. 32.
    Yao, A.C.-C: How to generate and exchange secrets (extended abstract). In: 27th FOCS, pp. 162–167. IEEE Computer Society Press, October 1986Google Scholar

Copyright information

© International Association for Cryptologic Research 2016

Authors and Affiliations

  • Brett Hemenway
    • 1
  • Zahra Jafargholi
    • 2
  • Rafail Ostrovsky
    • 3
  • Alessandra Scafuro
    • 2
    • 4
  • Daniel Wichs
    • 2
  1. 1.University of PennsylvaniaPhiladelphiaUSA
  2. 2.Northeastern UniversityBostonUSA
  3. 3.University of CaliforniaLos AngelesUSA
  4. 4.Boston UniversityBostonUSA

Personalised recommendations