Advertisement

Automatic Search of Meet-in-the-Middle and Impossible Differential Attacks

  • Patrick Derbez
  • Pierre-Alain Fouque
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9815)

Abstract

Tracking bits through block ciphers and optimizing attacks at hand is one of the tedious task symmetric cryptanalysts have to deal with. It would be nice if a program will automatically handle them at least for well-known attack techniques, so that cryptanalysts will only focus on finding new attacks. However, current automatic tools cannot be used as is, either because they are tailored for specific ciphers or because they only recover a specific part of the attacks and cryptographers are still needed to finalize the analysis.

In this paper we describe a generic algorithm exhausting the best meet-in-the-middle and impossible differential attacks on a very large class of block ciphers from byte to bit-oriented, SPN, Feistel and Lai-Massey block ciphers. Contrary to previous tools that target to find the best differential / linear paths in the cipher and leave the cryptanalysts to find the attack using these paths, we automatically find the best attacks by considering the cipher and the key schedule algorithms. The building blocks of our algorithm led to two algorithms designed to find the best simple meet-in-the-middle attacks and the best impossible truncated differential attacks respectively. We recover and improve many attacks on AES, mCRYPTON, SIMON, IDEA, KTANTAN, PRINCE and ZORRO. We show that this tool can be used by designers to improve their analysis.

Keywords

Automatic search Meet-in-the-middle Impossible truncated differential Cryptanalysis 

References

  1. [AIK+00]
    Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita, T.: Camellia: A 128-bit block cipher suitable for multiple platforms - design and analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 39–56. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. [BBS99]
    Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31 rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. [BCG+12]
    Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen, L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen, S.S., Yalçın, T.: PRINCE – A low-latency block cipher for pervasive computing applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 208–225. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. [BDD+14]
    Bar-On, A., Dinur, I., Dunkelman, O., Lallemand, V., Tsaban, B.: Improved analysis of zorro-like ciphers. IACR Cryptology ePrint Archive 2014, 228 (2014)Google Scholar
  5. [BDD+15]
    Bar-On, A., Dinur, I., Dunkelman, O., Lallemand, V., Keller, N., Tsaban, B.: Cryptanalysis of SP networks with partial non-linear layers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 315–342. Springer, Heidelberg (2015)Google Scholar
  6. [BDF11]
    Bouillaguet, C., Derbez, P., Fouque, P.-A.: Automatic search of attacks on round-reduced AES and applications. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 169–187. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. [BDKS15]
    Biham, E., Dunkelman, O., Keller, N., Shamir, A.: New attacks on IDEA with at least 6 rounds. J. Cryptol. 28(2), 209–239 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. [BNS14]
    Boura, C., Naya-Plasencia, M., Suder, V.: Scrutinizing and improving impossible differential attacks: applications to CLEFIA, Camellia, LBlock and Simon. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 179–199. Springer, Heidelberg (2014)Google Scholar
  9. [BPW06a]
    Buchmann, J., Pyshkin, A., Weinmann, R.-P.: Block ciphers sensitive to gröbner basis attacks. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 313–331. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. [BPW06b]
    Buchmann, J., Pyshkin, A., Weinmann, R.-P.: A zero-dimensional Gröbner basis for AES-128. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 78–88. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. [BS93]
    Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard. Springer, New York (1993)CrossRefzbMATHGoogle Scholar
  12. [BSS+13]
    Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The simon and speck families of lightweight block ciphers. Cryptology ePrint Archive, Report 2013/404 (2013). http://eprint.iacr.org/
  13. [CDK09]
    De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. [CM03]
    Courtois, N.T., Meier, W.: Algebraic attacks on stream ciphers with linear feedback. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. [DF13]
    Derbez, P., Fouque, P.-A.: Exhausting Demirci-Selçuk meet-in-the-middle attacks against reduced-round AES. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 541–560. Springer, Heidelberg (2014)Google Scholar
  16. [DFJ13]
    Derbez, P., Fouque, P.-A., Jean, J.: Improved key recovery attacks on reduced-round AES in the single-key setting. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 371–387. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. [DJ14]
    Dinur, I., Jean, J.: Cryptanalysis of FIDES. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 224–240. Springer, Heidelberg (2015)Google Scholar
  18. [DKS10]
    Dunkelman, O., Keller, N., Shamir, A.: Improved single-key attacks on 8-Round AES-192 and AES-256. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 158–176. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. [DS08]
    Demirci, H., Selçuk, A.A.: A meet-in-the-middle attack on 8-Round AES. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 116–126. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. [FJP13]
    Fouque, P.-A., Jean, J., Peyrin, T.: Structural evaluation of AES and chosen-key distinguisher of 9-round AES-128. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 183–203. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. [GGNS13]
    Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block ciphers that are easier to mask: how far can we go? In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 383–399. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  22. [GJ79]
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)zbMATHGoogle Scholar
  23. [GNL11]
    Gong, Z., Nikova, S., Law, Y.W.: KLEIN: A new family of lightweight block ciphers. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 1–18. Springer, Heidelberg (2012)Google Scholar
  24. [GNPW13]
    Guo, J., Nikolic, I., Peyrin, T., Wang, L.: Cryptanalysis of zorro. IACR Cryptology ePrint Archive 2013:713 (2013)Google Scholar
  25. [HBL14]
    Hao, Y., Bai, D., Li, L.: A meet-in-the-middle attack on round-reduced mcrypton using the differential enumeration technique. In: Au, M.H., Carminati, B., Kuo, C.-C.J. (eds.) NSS 2014. LNCS, vol. 8792, pp. 166–183. Springer, Heidelberg (2014)Google Scholar
  26. [KBN09]
    Khovratovich, D., Biryukov, A., Nikolic, I.: Speeding up collision search for byte-oriented hash functions. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 164–181. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  27. [KJS+13]
    Kang, J., Jeong, K., Sung, J., Hong, S., Lee, K.: Collision attacks on AES-192/256, crypton-192/256, mCrypton-96/128, anubis. J. Appl. Math. 2013, 713673:1–713673:10 (2013). Observation of strainsGoogle Scholar
  28. [KKP+03]
    Kwon, D., et al.: New block cipher: ARIA. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 432–445. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  29. [Knu98]
    Knudsen, L.R.: Deal – a 128-bit block cipher. Technical Report Department of Informatics (1998)Google Scholar
  30. [Leu12]
    Leurent, G.: Analysis of differential attacks in ARX constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 226–243. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  31. [LJ14]
    Li, L., Jia, K.: Improved meet-in-the-middle attacks on reduced-round camellia-192/256. Cryptology ePrint Archive, Report 2014/292 (2014)Google Scholar
  32. [LJW13]
    Li, L., Jia, K., Wang, X.: Improved meet-in-the-middle attacks on aes-192 and prince. Cryptology ePrint Archive, Report 2013/573 (2013)Google Scholar
  33. [LWWZ13]
    Lin, L., Wu, W., Wang, Y., Zhang, L.: General model of the single-key meet-in-the-middle distinguisher on the word-oriented block cipher. In: Lee, H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS, vol. 8565, pp. 203–223. Springer, Heidelberg (2014)Google Scholar
  34. [MHL+02]
    Moon, D., Hwang, K., Lee, W., Lee, S., Lim, J.: Impossible differential cryptanalysis of reduced round XTEA and TEA. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 49–60. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  35. [MS13]
    Morawiecki, P., Srebrny, M.: A sat-based preimage analysis of reduced keccak hash functions. Inf. Process. Lett. 113(10–11), 392–397 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  36. [MZ06]
    Mironov, I., Zhang, L.: Applications of SAT solvers to cryptanalysis of hash functions. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 102–115. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  37. [NIS01]
    NIST. Advanced Encryption Standard (AES), FIPS 197. Technical report, NIST, November 2001Google Scholar
  38. [RASA14]
    Rasoolzadeh, S., Ahmadian, Z., Salmasizadeh, M., Aref, M.R.: Total break of zorro using linear and differential attacks. IACR Cryptology ePrint Archive 2014:220 (2014)Google Scholar
  39. [Sem14]
    NXP Semiconductors. The PRINCE challenge (2014). https://www.emsec.rub.de/research/research_startseite/prince-challenge/
  40. [SIH+11]
    Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo: An ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  41. [SKPI07]
    Sugita, M., Kawazoe, M., Perret, L., Imai, H.: Algebraic cryptanalysis of 58-Round SHA-1. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 349–365. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  42. [SMMK12]
    Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: A lightweight block cipher for multiple platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 339–354. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  43. [SNC09]
    Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  44. [SSA+07]
    Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockcipher CLEFIA (Extended Abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 181–195. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  45. [WRG+11]
    Wei, L., Rechberger, C., Guo, J., Wu, H., Wang, H., Ling, S.: Improved meet-in-the-middle cryptanalysis of KTANTAN (Poster). In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. LNCS, vol. 6812, pp. 433–438. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  46. [WW12]
    Wu, S., Wang, M.: Automatic search of truncated impossible differentials for word-oriented block ciphers. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 283–302. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  47. [WZ11]
    Wu, W., Zhang, L.: LBlock: A lightweight block cipher. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2016

Authors and Affiliations

  1. 1.Université Rennes 1 / IRISARennesFrance
  2. 2.Institut Universitaire de FranceParisFrance

Personalised recommendations