Advertisement

Circular Security Separations for Arbitrary Length Cycles from LWE

  • Venkata KoppulaEmail author
  • Brent Waters
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9815)

Abstract

We describe a public key encryption that is IND-CPA secure under the Learning with Errors (LWE) assumption, but that is not circular secure for arbitrary length cycles. Previous separation results for cycle length greater than 2 require the use of indistinguishability obfuscation, which is not currently realizable under standard assumptions.

References

  1. 1.
    Acar, T., Belenkiy, M., Bellare, M., Cash, D.: Cryptographic agility and its relation to circular encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 403–422. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Adão, P., Bana, G., Herzog, J., Scedrov, A.: Soundness and completeness of formal encryption: the cases of key cycles and partial information leakage. J. Comput. Secur. 17(5), 737–797 (2009)CrossRefGoogle Scholar
  3. 3.
    Alperin-Sheriff, J., Peikert, C.: Circular and KDM security for identity-based encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 334–352. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Applebaum, B.: Key-dependent message security: generic amplification and completeness. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 527–546. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure encryption based on hard learning problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded key-dependent message security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 423–444. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Bishop, A., Hohenberger, S., Waters, B.: New circular security counterexamples from decision linear and learning with errors. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 776–800. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  8. 8.
    Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence of key-dependent messages. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 62–75. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 108–125. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption under subgroup indistinguishability (or: Quadratic residuosity strikes back). IACR Cryptology ePrint Archive 2010, 226 (2010)Google Scholar
  11. 11.
    Brakerski, Z., Goldwasser, S., Kalai, Y.T.: Black-box circular-secure encryption beyond affine functions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 201–218. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: Symposium on Theory of Computing Conference, STOC 2013, Palo Alto, CA, USA, 1–4 June 2013, pp. 575–584 (2013)Google Scholar
  13. 13.
    Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. IACR Cryptology ePrint Archive 2001, 19 (2001)Google Scholar
  14. 14.
    Cash, D., Green, M., Hohenberger, S.: New definitions and separations for circular security. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 540–557. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015)Google Scholar
  16. 16.
    Coron, J.-S., et al.: Zeroizing without low-level zeroes: new MMAP attacks and their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9216, pp. 247–266. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  17. 17.
    Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS (2013)Google Scholar
  19. 19.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, 31 May – 2 June 2009, pp. 169–178 (2009)Google Scholar
  20. 20.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, 17–20 May 2008, pp. 197–206 (2008)Google Scholar
  21. 21.
    Koppula, V., Ramchen, K., Waters, B.: Separations in circular security for arbitrary length key cycles. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 378–400. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  22. 22.
    Laud, P.: Encryption cycles and two views of cryptography. In: NORDSEC 2002 - Proceedings of the 7th Nordic Workshop on Secure IT Systems (Karlstad University Studies 2002:31), pp. 85–100 (2002)Google Scholar
  23. 23.
    Marcedone, A., Orlandi, C.: Obfuscation \(\Rightarrow \) (IND-CPA security \(\nRightarrow \) circular security). In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 77–90. Springer, Heidelberg (2014)Google Scholar
  24. 24.
    Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  25. 25.
    Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, 31 May – 2 June 2009, pp. 333–342 (2009)Google Scholar
  27. 27.
    Peikert, C.: A decade of lattice cryptography. Cryptology ePrint Archive, Report 2015/939 (2015). http://eprint.iacr.org/
  28. 28.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, 22–24 May 2005, pp. 84–93 (2005)Google Scholar

Copyright information

© International Association for Cryptologic Research 2016

Authors and Affiliations

  1. 1.University of Texas at AustinAustinUSA

Personalised recommendations