# On Statistically Secure Obfuscation with Approximate Correctness

## Abstract

Goldwasser and Rothblum (TCC ’07) prove that statistical indistinguishability obfuscation (iO) cannot exist if the obfuscator must maintain perfect correctness (under a widely believed complexity theoretic assumption: \(\mathcal {NP}\not \subseteq \mathcal {SZK}\subseteq \mathcal {AM}\cap \mathbf {co}\mathcal {AM}\)). However, for many applications of iO, such as constructing public-key encryption from one-way functions (one of the main open problems in theoretical cryptography), *approximate* correctness is sufficient. It had been unknown thus far whether statistical approximate iO (saiO) can exist.

We show that saiO does not exist, even for a minimal correctness requirement, if \(\mathcal {NP}\not \subseteq \mathcal {AM}\cap \mathbf {co}\mathcal {AM}\), and if one-way functions exist. A simple complementary observation shows that if one-way functions do not exist, then average-case saiO exists. Technically, previous approaches utilized the behavior of the obfuscator on *evasive* functions, for which saiO always exists. We overcome this barrier by using a PRF as a “baseline” for the obfuscated program.

We broaden our study and consider relaxed notions of *security* for iO. We introduce the notion of *correlation obfuscation*, where the obfuscations of equivalent circuits only need to be mildly correlated (rather than statistically indistinguishable). Perhaps surprisingly, we show that correlation obfuscators exist via a trivial construction for some parameter regimes, whereas our impossibility result extends to other regimes. Interestingly, within the gap between the parameters regimes that we show possible and impossible, there is a small fraction of parameters that still allow to build public-key encryption from one-way functions and thus deserve further investigation.

## Notes

### Acknowledgment

We are grateful to Andrej Bogdanov, Kai-Min Chung, Siyao Guo, Markulf Kohlweiss, Arno Mittelbach and Vinod Vaikuntanathan for helpful discussions. In particular, Andrej and Vinod pointed out that PAC-learneability implies approximate obfuscation and that thus, CNF formulae are PAC-learneable, which implies that impossibility results for saiO need to obfuscate more complex functions than CNF formulae. The discussions with Vinod at the Mathematisches Forschungsinstitut Oberwolfach (MFO) inspired the idea of embedding a formula into a PRF. Vinod also suggested that in the absence of one-way functions, there exists a perfectly secure variant of obfuscation where the correctness is on average over the circuit distribution, the input and the obfuscator.

## Supplementary material

## References

- 1.Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)Google Scholar
- 2.Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (im)possibility of obfuscating programs. J. ACM
**59**(2), 6 (2012)MathSciNetCrossRefMATHGoogle Scholar - 3.Bitansky, N., Paneth, O.: On the impossibility of approximate obfuscation and applications to resettable cryptography. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th Annual ACM Symposium on Theory of Computing, Palo Alto, CA, USA, 1–4 June 2013, pp. 241–250. ACM Press (2013)Google Scholar
- 4.Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation: from approximate to exact. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A. LNCS, vol. 9562, pp. 67–95. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49096-9_4 CrossRefGoogle Scholar
- 5.Bogdanov, A., Lee, C.H.: Limits of provable security for homomorphic encryption. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 111–128. Springer, Heidelberg (2013)CrossRefGoogle Scholar
- 6.Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013)CrossRefGoogle Scholar
- 7.Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (2014)CrossRefGoogle Scholar
- 8.Canetti, R., Kalai, Y.T., Paneth, O.: On Obfuscation with random oracles. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 456–467. Springer, Heidelberg (2015)CrossRefGoogle Scholar
- 9.Diffie, W., Hellman, M.E.: Multiuser cryptographic techniques. In: American Federation of Information Processing Societies, 1976 National Computer Conference. AFIPS Conference Proceedings, New York, NY, USA, 7–10 June 1976, vol. 45, pp. 109–112. AFIPS Press (1976)Google Scholar
- 10.Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th Annual Symposium on Foundations of Computer Science, Berkeley, CA, USA, 26–29 October 2013, pp. 40–49. IEEE Computer Society Press (2013)Google Scholar
- 11.Goldreich, O.: Computational Complexity - A Conceptual Perspective. Cambridge University Press, Cambridge (2008)CrossRefMATHGoogle Scholar
- 12.Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions (extended abstract). In: 25th Annual Symposium on Foundations of Computer Science, Singer Island, Florida, 24–26 October 1984, pp. 464–479. IEEE Computer Society Press (1984)Google Scholar
- 13.Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM
**33**(4), 792–807 (1986)MathSciNetCrossRefMATHGoogle Scholar - 14.Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Heidelberg (2007)CrossRefGoogle Scholar
- 15.Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. J. Cryptology
**27**(3), 480–505 (2014)MathSciNetCrossRefMATHGoogle Scholar - 16.Hada, S., Sakurai, K.: A note on the (im)possibility of using obfuscators to transform private-key encryption into public-key encryption. In: Miyaji, A., Kikuchi, H., Rannenberg, K. (eds.) IWSEC 2007. LNCS, vol. 4752, pp. 1–12. Springer, Heidelberg (2007)CrossRefGoogle Scholar
- 17.Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput.
**28**(4), 1364–1396 (1999)MathSciNetCrossRefMATHGoogle Scholar - 18.Holenstein, T.: Strengthening Key Agreement Using Hard-Core Sets. Ph.D. thesis, ETH Zurich (2006)Google Scholar
- 19.Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based cryptography (extended abstract). In: 30th Annual Symposium on Foundations of Computer Science, Research Triangle Park, North Carolina, 30 October - 1 November 1989, pp. 230–235. IEEE Computer Society Press (1989)Google Scholar
- 20.Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: 21st Annual ACM Symposium on Theory of Computing, Seattle, Washington, USA, 15–17 May 1989, pp. 44–61. ACM Press (1989)Google Scholar
- 21.Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 8–26. Springer, Heidelberg (1990)Google Scholar
- 22.Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom functions and applications. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS 13, 20th Conference on Computer and Communications Security, Berlin, Germany, 4–8 November 2013, pp. 669–684. ACM Press (2013)Google Scholar
- 23.Komargodski, I., Moran, T., Naor, M., Pass, R., Rosen, A., Yogev, E.: One-way functions and (im)perfect obfuscation. In: 55th Annual Symposium on Foundations of Computer Science, Philadelphia, PA, USA, 18–21 October 2014, pp. 374–383. IEEE Computer Society Press (2014)Google Scholar
- 24.Lin, H., Pass, R., Seth, K., Telang, S.: Output-compressing randomized encodings and applications. Cryptology ePrint Archive, Report 2015/720 (2015). http://eprint.iacr.org/2015/720
- 25.Mahmoody, M., Mohammed, A., Nematihaji, S.: On the impossibility of virtual black-box obfuscation in idealized models. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A. LNCS, vol. 9562, pp. 18–48. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49096-9_2 CrossRefGoogle Scholar
- 26.Mahmoody, M., Mohammed, A., Nematihaji, S., Pass, R., Shelat, A.: Lower bounds on assumptions behind indistinguishability obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A. LNCS, vol. 9562, pp. 49–66. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49096-9_3 CrossRefGoogle Scholar
- 27.Mahmoody, M., Xiao, D.: On the power of randomized reductions and the checkability of SAT. In: Proceedings of the 25th Annual IEEE Conference on Computational Complexity, CCC 2010, Cambridge, Massachusetts, 9–12 June 2010, pp. 64–75. IEEE Computer Society (2010)Google Scholar
- 28.Pass, R., Shelat, A.: Impossibility of VBB obfuscation with ideal constant-degree graded encodings. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A. LNCS, vol. 9562, pp. 3–17. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49096-9_1 CrossRefGoogle Scholar
- 29.Sahai, A., Vadhan, S.P.: A complete promise problem for statistical zero-knowledge. In: 38th Annual Symposium on Foundations of Computer Science, Miami Beach, Florida, 19–22 October 1997, pp. 448–457. IEEE Computer Society Press (1997)Google Scholar
- 30.Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: Shmoys, D.B. (ed.) 46th Annual ACM Symposium on Theory of Computing, New York, NY, USA, 31 May - 3 June 2014, pp. 475–484. ACM Press (2014)Google Scholar
- 31.Leslie, G.: Valiant.: a theory of the learnable. Commun. ACM
**27**(11), 1134–1142 (1984)CrossRefGoogle Scholar - 32.Valiant, L.G., Vazirani, V.V.: NP is as easy as detecting unique solutions. In: Sedgewick, R. (ed.) 17th Annual ACM Symposium on Theory of Computing, Providence, Rhode Island, USA, 6–8 May 1985, pp. 458–463. ACM Press (1985)Google Scholar