Advertisement

Practical Order-Revealing Encryption with Limited Leakage

  • Nathan ChenetteEmail author
  • Kevin Lewi
  • Stephen A. Weis
  • David J. Wu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9783)

Abstract

In an order-preserving encryption scheme, the encryption algorithm produces ciphertexts that preserve the order of their plaintexts. Order-preserving encryption schemes have been studied intensely in the last decade, and yet not much is known about the security of these schemes. Very recently, Boneh et al. (Eurocrypt 2015) introduced a generalization of order-preserving encryption, called order-revealing encryption, and presented a construction which achieves this notion with best-possible security. Because their construction relies on multilinear maps, it is too impractical for most applications and therefore remains a theoretical result.

In this work, we build efficiently implementable order-revealing encryption from pseudorandom functions. We present the first efficient order-revealing encryption scheme which achieves a simulation-based security notion with respect to a leakage function that precisely quantifies what is leaked by the scheme. In fact, ciphertexts in our scheme are only about 1.6 times longer than their plaintexts. Moreover, we show how composing our construction with existing order-preserving encryption schemes results in order-revealing encryption that is strictly more secure than all preceding order-preserving encryption schemes.

Keywords

Encryption Scheme Range Query Security Parameter Pseudorandom Function Security Notion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank Sam Kim for helpful discussions about ORE, and Adam O’Neill for useful insights in shrinking the ciphertext size of our main construction. We also thank the anonymous reviewers for their helpful comments. This work was partially supported by an NSF Graduate Research Fellowship. Opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of Facebook.

References

  1. 1.
    Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order-preserving encryption for numeric data. In: SIGMOD, pp. 563–574 (2004)Google Scholar
  2. 2.
    Albrecht, M.R., Farshim, P., Hofheinz, D., Larraia, E., Paterson, K.G.: Multilinear maps from obfuscation. In: TCC (2016)Google Scholar
  3. 3.
    Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional encryption. In: CRYPTO, pp. 308–326 (2015)Google Scholar
  4. 4.
    Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 528–556. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  5. 5.
    Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  6. 6.
    Binnig, C., Hildenbrand, S., Färber, F.: Dictionary-based order-preserving string compression for main memory column stores. In: ACM SIGMOD, pp. 283–296 (2009)Google Scholar
  7. 7.
    Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224–241. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Boldyreva, A., Chenette, N., O’Neill, A.: Order-preserving encryption revisited: improved security analysis and alternative solutions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 578–595. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman, J.: Semantically secure order-revealing encryption: multi-input functional encryption without obfuscation. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 563–594. Springer, Heidelberg (2015)Google Scholar
  10. 10.
    Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. Contemp. Math. 324(1), 71–90 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Boneh, D., Wu, D.J., Zimmerman, J.: Immunizing multilinear maps against zeroizing attacks. In: IACR Cryptology ePrint Archive 2014/930 (2014)Google Scholar
  12. 12.
    Brakerski, Z., Komargodski, I., Segev, G.: From single-input to multi-input functional encryption in the private-key setting. In: IACR Cryptology ePrint Archive 2015/158 (2015)Google Scholar
  13. 13.
    Bun, M., Zhandry, M.: Order-revealing encryption and the hardness of private learning. In: IACR Cryptology ePrint Archive 2015/417 (2015)Google Scholar
  14. 14.
    Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on remote encrypted data. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Chenette, N., Lewi, K., Weis, S.A., Wu, D.J.: Practical order-revealing encryption with limited leakage. In: IACR Cryptology ePrint Archive 2015/1125 (2015)Google Scholar
  16. 16.
    Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015)Google Scholar
  17. 17.
    Cheon, J.H., Lee, C., Ryu, H.: Cryptanalysis of the new CLT multilinear maps. In: IACR Cryptology ePrint Archive (2011) Observation of strains: 934 (2015)Google Scholar
  18. 18.
    Coron, J.-S.: Cryptanalysis of GGH15 multilinear maps (2015)Google Scholar
  19. 19.
    Coron, J.-S., Gentry, C., Halevi, S., Lepoint, T., Maji, H.K., Miles, E., Raykova, M., Sahai, A., Tibouchi, M.: Zeroizing without low-level zeroes: new MMAP attacks and their limitations. In: CRYPTO, pp. 247–266 (2015)Google Scholar
  20. 20.
    Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Coron, J.-S., de Lepoint, T., Tibouchi, M.: New multilinear maps over the integers. In: CRYPTO, pp. 267–286 (2015)Google Scholar
  22. 22.
    Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption: improved definitions and efficient constructions. In: ACM CCS, pp. 79–88 (2006)Google Scholar
  23. 23.
    Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  24. 24.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS, pp. 40–49 (2013)Google Scholar
  25. 25.
    Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure functional encryption without obfuscation. In: IACR Cryptology ePrint Archive 2014/666 (2014)Google Scholar
  26. 26.
    Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lattices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 498–527. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  27. 27.
    Goldreich, O.: The Foundations of Cryptography - Volume 1, Basic Techniques. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  28. 28.
    Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions (extended abstract). In: FOCS, pp. 464–479 (1984)Google Scholar
  29. 29.
    Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  30. 30.
    Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled circuits and succinct functional encryption. In: STOC, pp. 555–564 (2013)Google Scholar
  31. 31.
    Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  33. 33.
    Hu, Y., Huiwen, J.: Cryptanalysis of GGH map. In: IACR Cryptology ePrint Archive 2015/301 (2015)Google Scholar
  34. 34.
    Kadhem, H., Amagasa, T., Kitagawa, H.: A secure and efficient order preserving encryption scheme for relational databases. In: KMIS, pp. 25–35 (2010)Google Scholar
  35. 35.
    Kerschbaum, F.: Frequency-hiding order-preserving encryption. In: ACM CCS, pp. 656–667 (2015)Google Scholar
  36. 36.
    Kerschbaum, F., Schröpfer, A.: Optimal average-complexity ideal-security order-preserving encryption. In: ACM CCS, pp. 275–286 (2014)Google Scholar
  37. 37.
    Langlois, A., Stehlé, D., Steinfeld, R.: GGHLite: more efficient multilinear maps from ideal lattices. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 239–256. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  38. 38.
    Mavroforakis, C., Chenette, N., O’Neill, A., Kollios, G., Canetti, R.: Modular order-preserving encryption, revisited. In: ACM SIGMOD, pp. 763–777 (2015)Google Scholar
  39. 39.
    Minaud, B., Fouque, P.-A.: Cryptanalysis of the new multilinear map over the integers. In: IACR Cryptology ePrint Archive 2015/941 (2015)Google Scholar
  40. 40.
    Naveed, M., Kamara, S., Wright, C.V.: Inference attacks on property-preserving encrypted databases. In: CCS (2015)Google Scholar
  41. 41.
    Pandey, O., Rouselakis, Y.: Property preserving symmetric encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 375–391. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  42. 42.
    Popa, R.A., Li, F.H., Zeldovich, N.: An ideal-security protocol for order-preserving encoding. In: IEEE Symposium on Security and Privacy, pp. 463–477 (2013)Google Scholar
  43. 43.
    Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: Cryptdb: protecting confidentiality with encrypted query processing. In: SOSP, pp. 85–100 (2011)Google Scholar
  44. 44.
    Roche, D., Apon, D., Choi, S.G., Yerukhimovich, A.: POPE: Partial order-preserving encoding. In: Cryptology ePrint Archive, Report 2015/1106 (2015)Google Scholar
  45. 45.
    Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public keys. In: ACM CCS, pp. 463–472 (2010)Google Scholar
  46. 46.
    Skyhigh Networks Inc. https://www.skyhighnetworks.com/. Accessed 11 Dec 2015
  47. 47.
    Teranishi, I., Yung, M., Malkin, T.: Order-preserving encryption secure beyond one-wayness. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 42–61. Springer, Heidelberg (2014)Google Scholar
  48. 48.
    Xiao, L., Yen, I-L., Huynh, D.T.: Extending order preserving encryption for multi-user systems. In: IACR Cryptology ePrint Archive, (2011) Observation of strains: 192 (2012)Google Scholar
  49. 49.
    Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 439–467. Springer, Heidelberg (2015)Google Scholar

Copyright information

© International Association for Cryptologic Research 2016

Authors and Affiliations

  • Nathan Chenette
    • 1
    Email author
  • Kevin Lewi
    • 2
  • Stephen A. Weis
    • 3
  • David J. Wu
    • 2
  1. 1.Rose-Hulman Institute of TechnologyTerre HauteUSA
  2. 2.Stanford UniversityStanfordUSA
  3. 3.Facebook, Inc.Menlo ParkUSA

Personalised recommendations