Advertisement

VDI-Wärmeatlas pp 1487-1519 | Cite as

L2.4 Kritische Massenströme durch Düsen, Ventile und Rohreinbauten

  • Jürgen SchmidtEmail author
Chapter
Part of the Springer Reference Technik book series (SRT)

Zusammenfassung

Dies ist ein Kapitel der 12. Auflage des VDI-Wärmeatlas.

Literatur

  1. 1.
    Beune, A.: Analysis of High Pressure Safety Valves. PhD thesis, TU Einhoven, The Netherlands (2009)Google Scholar
  2. 2.
    ISO 4126 Teil 7: Safety Devices for Protection Against Excessive Pressure – Safety Valves. DIN Deutsches Institute für Normung e.V. Beuth Verlag GmbH, Berlin (2016)Google Scholar
  3. 3.
    Schmidt, J., Peschel, W., Beune, A.: Experimental and theoretical studies on high pressure safety valves: Sizing and design supported by numerical calculations (CFD). Chem. Eng. Technol. 32(2), 252–262 (2009)CrossRefGoogle Scholar
  4. 4.
    Rist, D.: Dynamik Realer Gase. Springer, Berlin (1996)CrossRefGoogle Scholar
  5. 5.
    Poling, B., Prausnitz, J., O´Connell, J.: The Properties of Gases and Liquids, 5. Aufl. McGraw Hill, New York (2007)Google Scholar
  6. 6.
    Dohrn, R.: Berechnung von Phasengleichgewichten. Vieweg Verlag, Braunschweig (1994)CrossRefGoogle Scholar
  7. 7.
    Schmidt, J.: Ventline Sizing Software des CSE Center of Safety Excellence- CSE-ProSAR, Pfinztal. www.cse-engineering.de (2017)
  8. 8.
    Schmidt, J.: Process and Plant Safety – Applying Computational Fluid Dynamics. Wiley, Weinheim (2012)Google Scholar
  9. 9.
    Leung, J.C.: A generalized correlation for one-component homogeneous equilibrium flashing choked flow. AIchE J. 32(10), 1743–1746 (1986)CrossRefGoogle Scholar
  10. 10.
    Fisher, H.G.: Emergency Relief System Design Using DIERES Technology. The design institute for emergency relief systems project manual. AIchE, New York (1992)Google Scholar
  11. 11.
    CCPS Handbook: Guidelines for Pressure Relief and Effluent Handling Systems. AIChE, New York (1998)Google Scholar
  12. 12.
    Schmidt, J.: Sizing of safety valves for multi-purpose plants according to ISO 4126-10. J. Loss Prev. Process Ind. 25, 181–191 (2011)Google Scholar
  13. 13.
    Henry, R., Fauske, H.: The two-phase critical flow of one-component mixtures in nozzles, orifices, and short tubes. J. Heat Transf. 93(5), 179–187 (1971)CrossRefGoogle Scholar
  14. 14.
    Darby, R.: On two-phase frozen and flashing flows in safety relief valves Recommended calculation method and the proper use of the discharge coefficient. J. Loss Prev. 17(4), 255–259 (2004)Google Scholar
  15. 15.
    Diener, R., Schmidt, J.: Sizing of throttling devices for gas liquid two-phase flow. Part 2: Control valves, orifices and nozzles. Process. Saf. Prog. 24(1), 29–37 (2005)CrossRefGoogle Scholar
  16. 16.
    Schmidt, J.: Sizing of nozzles, venturis, orifices, control and safety valves for initially Sub-cooled gas/liquid two-phase flow – the HNE-DS method. Forsch. Ing. Wesen 71, 47–54 (2007)Google Scholar
  17. 17.
    Schmidt, J., Claramunt, S.: Sizing of rupture disks for two-phase gas/liquid flow according to HNE-CSE-model. J. Loss Prev. Process Ind. 41, 419–432 (2016)CrossRefGoogle Scholar
  18. 18.
    Tangren, R.F., Dodge, C.H., Seifert, H.S.: Compressibility effect in two-phase flow. J. Appl. Phys. 20, 736 f. (1949)Google Scholar
  19. 19.
    Diener, R., Schmidt, J.: Sizing of throttling devices for gas liquid two-phase flow. Part 1: Safety valves. Process. Saf. Prog. 23(4), 335–344 (2004)CrossRefGoogle Scholar
  20. 20.
    Diener, R, Schmidt, J.: Extended ω-method applicable for low inlet mass flow qualities. 13th Mtg ISO/TC185/WG1, Ludwigshafen, Germany, 15/16th June 1998 (1998)Google Scholar
  21. 21.
    Simpson, H.C., Rooney, D.H., Grattan, E.: Two phase flow through gate valves and orifice plates. International conference on the physical modelling of multi-phase flow, Coventry, 19–20th April 1983 (1983)Google Scholar
  22. 22.
    API 520: Sizing, selection, and installation of pressure-relieving devices in refineries. Part I: Sizing and selection. American Petroleum Institute, 8. Aufl. (2011)Google Scholar
  23. 23.
    ISO/DIS 23251:2007: Petroleum, Petrochemical and Natural Gas Industries – Pressure-Relieving and Depressuring Systems (2011)Google Scholar
  24. 24.
    Sozzi, G.L., Sutherland, W.A.: Critical Flows of Saturated and Subcritical Water at High Pressure. General Electric, San Jose (1975). NEDO-13418Google Scholar
  25. 25.
    Schmidt, J.: Joint Meeting of the European and US DIERS user groups. Hamburg, Deutschland (2011)Google Scholar
  26. 26.
    Schmidt, J.: Joint Meeting of the US and European DIERS user groups (2011)Google Scholar
  27. 27.
    Chisholm, D.: A theoretical basis for the Lockhart-Martinelli correlation for two phase flow. Int. J. Heat Mass Transf. 10, 1767–1778 (1967)CrossRefGoogle Scholar
  28. 28.
    Lockhart, R.W., Martinelli, R.C.: Proposed correlation of data for isothermal two-phase two-component flow. Chem. Eng. Prog. 45(1), 39 (1949)Google Scholar
  29. 29.
    Chisholm, D.: Two-Phase Flow in Pipelines and Heat Exchangers. George Goodwin, Essex (1983)Google Scholar
  30. 30.
    Schmidt, J., Egan, S.: Case studies of sizing pressure relief valves for two-phase flow. Chem. Eng. Technol. 32(2), 263–272 (2009)CrossRefGoogle Scholar
  31. 31.
    ISO-4126-10: Safety Devices for Protection Against Excessive Pressure – Sizing of Safety Valves for Gas/Liquid Two-Phase Flow. DIN Deutsches Institute für Normung e.V/Beuth Verlag GmbH, Berlin (2010)Google Scholar
  32. 32.
    Schmidt, J., Westphal, F.: Praxisbezogenes Vorgehen bei der Auslegung von Sicherheitsventilen und deren Abblaseleitungen für die Durchströmung mit Dampf/Flüssigkeits-Gemischen – Teil 1. Chem. Ing. Tech. 69(6), 776–792 (1997)CrossRefGoogle Scholar
  33. 33.
    Schmidt, J., Westphal, F.: Praxisbezogenes Vorgehen bei der Auslegung von Sicherheitsventilen und deren Abblaseleitungen für die Durchströmung mit Dampf/Flüssigkeits-Gemischen – Teil 2. Chem. Ing. Tech. 69(8), 1074–1091 (1997)CrossRefGoogle Scholar
  34. 34.
    Schmidt, J.: Absicherung von Sicherheitsventilen für Mehrzweckanlagen nach ISO 4126-10. Chem. Ing. Technik 83(6), 796–812 (2011)CrossRefGoogle Scholar
  35. 35.
    Schmidt, J.: Auslegung von Schutzeinrichtungen für wärmeübertragende Apparate. Chem. Ing. Technik 81(1–2), 79–95 (2009)Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.CSE Center of Safety Excellence gGmbHPfinztalDeutschland

Section editors and affiliations

  • Dieter Mewes
    • 1
  1. 1.Institut für VerfahrenstechnikLeibniz Universität HannoverHannoverDeutschland

Personalised recommendations