C3 Wärmeübertrager: Verminderung der Ablagerungsbildung

  • Hans Ulrich ZettlerEmail author
Part of the Springer Reference Technik book series (SRT)


Dies ist ein Kapitel der 12. Auflage des VDI-Wärmeatlas


  1. 1.
    Steinhagen, R., Müller-Steinhagen, H.M., Manni, K.: Fouling problems and fouling costs in New Zealand industries. Heat Transfer Eng. 14, 19–30 (1993)Google Scholar
  2. 2.
    Steinhagen, R., Müller-Steinhagen, H.M., Maani, K.: Heat Exchanger Applications, Fouling Problems and Fouling Costs in New Zealand Industries. Ministry of Commerce Report RD8829, S. 1–116 (1990)Google Scholar
  3. 3.
    Garrett-Price, B.A., et al.: Fouling of Heat Exchangers – Characteristics, Costs, Prevention, Control and Removal. Noyes Publications, Park Ridge (1985)Google Scholar
  4. 4.
    TEMA: Standards of the Tubular Exchanger Manufacturers Association, 6. Aufl. Tubular Exchanger Manufacturers Association, New York (1978)Google Scholar
  5. 5.
    Pritchard, A.M.: The economics of fouling. Publ. In: Melo, L.F., Bott, T.R., Bernardo, C.A. (Hrsg.) Fouling Science and Technology. NATO ASI Series E, Bd. 145. Kluwer Academic Publishers, Boston, USA (1987)Google Scholar
  6. 6.
    Bansal, B., Chen, X.D., Müller-Steinhagen, H.: Effect of suspended particles on calcium sulphate fouling in plate heat exchangers. ASME J. Heat Transfer 119, 568–574 (1997)Google Scholar
  7. 7.
    Epstein, N.: Fouling in heat exchangers. Publ. In: Taborek, J., Hewitt, G. (Hrsg.) Heat Exchanger Theory and Practice. McGraw-Hill, New York, USA (1983)Google Scholar
  8. 8.
    Blöchl, R., Müller-Steinhagen, H.M.: Influence of particle size and particle/liquid combination on particulate fouling in heat exchangers. Can. J. Chem. Eng. 68(4), 585–591 (1990)Google Scholar
  9. 9.
    Müller-Steinhagen, H.: Modellierung der Ablagerungsbildung in Wärmeübertragern – Vom Laborversuch zur Produktionsanlage. Berichte zur Energie- und Verfahrenstechnik Heft 20.1 (2000)Google Scholar
  10. 10.
    Taborek, J.: Private Communications (1987)Google Scholar
  11. 11.
    Knudsen, J.: Conquer cooling-water fouling. Chem. Eng. Prog. 91, 42–48 (1991)Google Scholar
  12. 12.
    Martin, H.: Wärmeübertrager. Georg Thieme Verlag, Stuttgart (1988)Google Scholar
  13. 13.
    Thackery, P.A.: The cost of fouling in heat exchanger plant. Effluent Water Treat. J. 20(3): 112–115. (1980)Google Scholar
  14. 14.
    Chenoweth, J.M.: General design of heat exchangers for fouling conditions. In: Proceedings of the NATO Advanced Study Institute on Advances in Fouling Science and Technology, Alvor (1987)Google Scholar
  15. 15.
    Woods, D.R., et al.: Evaluation of capital cost data: Heat exchangers, Can. J. Chem. Eng. 54, 469 (1976)Google Scholar
  16. 16.
    Sart, P., Eimer, K.: Control of Scaling or Fouling effects in Cooling Water System for Improvement of Heat Exchanger Efficiency. International Meeting on Industrial Heat Exchangers and Heat Recovery, Liege (1979)Google Scholar
  17. 17.
    Hewitt, G., Müller-Steinhagen, H.: Heat Exchanger Fouling in Crude Oil Distillation Units. ESDU Data Item 00016, S. 1–80 (2000)Google Scholar
  18. 18.
    Müller-Steinhagen, H.: Heat Exchanger Fouling – Mitigation and Cleaning Technologies, Bd. 1. PUBLICO Publications, Essen ISBN 3-934736-00-9 (2000)Google Scholar
  19. 19.
    Müller-Steinhagen, H.: Wärmeübertrager-Reinigungssysteme, Bd. 1. PUBLICO Publications, Essen ISBN 3-934736-02-5 (2001)Google Scholar
  20. 20.
    Müller-Steinhagen, H., Zettler, H.: Heat Exchanger Fouling – Mitigation and Cleaning Technologies, Bd. 2. PUBLICO Publications, Essen ISBN 3-934736-20-3 (2011)Google Scholar
  21. 21.
    Palen, J.: Shell and Tube Reboilers. Heat Exchanger Design Handbook, Section 3.7.8. Hemisphere Publishing Corp, Philadelphia (1983)Google Scholar
  22. 22.
    Bennett, C.A., Kistler, R.S., Lestina, T.G., King, D.G.: Improving heat exchanger designs. Chem. Eng. Prog. 103(4), 40–45 (2007)Google Scholar
  23. 23.
    Aguirre, F.J.: Reviewing the use of fouling factors in heat exchanger design. (2006)
  24. 24.
    Bennett, C.A.: Using a non-traditional approach to account for crude oil fouling in heat exchangers. Zugegriffen am 30.09.2005
  25. 25.
    Nesta, J.M., Bennett, C.A.: Fouling mitigation by design. The 6th International Conference on Petroleum Phase Behavior and Fouling, Amsterdam, The Netherlands, 19–23 June 2005Google Scholar
  26. 26.
    Nesta, J., Bennett, C.A.: Reduce fouling in shell-and-tube heat exchangers. Hydrocarb. Process 83(7), 77–82 (2004)Google Scholar
  27. 27.
    Solano, J., Garcia, A., Vicente, P., Viedma, A.: Performance evaluation of zero-fouling reciprocating scraped surface heat exchanger. In: Proceedings of the International Conference on Heat Exchanger Fouling and Cleaning, Schladming (2009)Google Scholar
  28. 28.
    Klaren, D.G.: Fluid Bed Heat Exchanger. CPP Edition Europe (1987)Google Scholar
  29. 29.
    TUBEC Tubes.: AST, Avesta Sandvik Tube AB, HelmondGoogle Scholar
  30. 30.
    Hewitt, G., Müller-Steinhagen, H.: Fouling in Cooling Water Systems Using Seawater. ESDU Data Item 03004, S. 1–100. International Ltd., London (2003)Google Scholar
  31. 31.
    Knudsen, J.G.: Fouling in heat exchangers. In: Heat Exchanger Design Handbook. Hemisphere Publishing Corporation, Washington, DC (1983)Google Scholar
  32. 32.
    Branch, C.A., Müller-Steinhagen, H.: Fouling during heat transfer to Kraft Pulp Black liquor. Part I: experimental results. Appita J. 48(1), 45–50 (1995)Google Scholar
  33. 33.
    Curran International –
  34. 34.
    Bornhorst, A., Zhao, Q., Müller-Steinhagen, H.: Reduction of scale formation by ion implantation and magnetron sputtering on heat transfer surfaces. Heat Transfer Eng. 20(2), 6–14 (1999)Google Scholar
  35. 35.
    Müller-Steinhagen, H., Zhao, Q., Helalizadeh, A., Ren, X.G.: The effect of surface properties on CaSO4 scale formation during convective heat transfer and subcooled flow boiling. Can. J. Chem. Eng. 78, 12–20 (2000)Google Scholar
  36. 36.
    Förster, M., Augustin, W., Bohnet, M.: Influence of the adhesion force crystal/heat exchanger surface on fouling mitigation. Chem. Eng. Process 38, 449–461 (1999)Google Scholar
  37. 37.
    Zhao, Q., Müller-Steinhagen, H.: Intermolecular and adhesion forces of deposits on modified heat transfer surfaces. In: Proceedings of UEFC on Heat Exchanger Fouling, Davos, Session II (2001)Google Scholar
  38. 38.
    Zhao, Q., Liu, Y., Müller-Steinhagen, H., Liu, G.: Graded Ni-P-PTFE coatings and their potential applications. Surf. Coat. Technol. 155, 279–284 (2002)Google Scholar
  39. 39.
    Paikert, P.: Verschmutzung von Kondensatoren und Kühltürmen, Chemie Ingenieur Technik, Volume 58 (Nr. 9), S. 709–715, Weinheim, (1986)Google Scholar
  40. 40.
    Gilmour, C.H.: No fooling – no fouling. Chem. Eng. Prog. 61(7), 49–54 (1965)Google Scholar
  41. 41.
    Kral, D., Stehlik, P., van der Ploeg, H.J., Master, B.I.: Helical Baffles in shell and tube heat exchangers, Part I: experimental verification. Heat Transfer Eng. 17(1), 93–101 (1996)Google Scholar
  42. 42.
    EMbaffle B.V., A Major Advance in Heat Exchanger Technology,
  43. 43.
    Butterworth, D., Guy, A.R., Welkey, J.J.: Design and Application of Twisted-Tube Exchangers. Brown Fintube UK (1998)Google Scholar
  44. 44.
    Moore, J.A.: Fintubes Foil Fouling for Scaling Services. Chemical Processing (1980)Google Scholar
  45. 45.
    Sheikholeslami, R., Watkinson, A.P.: Scaling of plain and externally finned heat exchanger tubes. J. Heat Transf. 108, 147–152 (1986)Google Scholar
  46. 46.
    Müller-Steinhagen, H.: Fouling of Extended Surface Heat Exchangers. UEF Conference on Compact Heat Exchangers, Davos (2001)Google Scholar
  47. 47.
    Klaren, D.G.: Fluid Bed Heat Exchanger. CPP Edition Europe (1987)Google Scholar
  48. 48.
    Kollbach, J., Dahm, W., Rautenbach, R.: Continuous cleaning of heat exchanger with recirculating fluidized bed. Heat Transf. Eng. 8(4), 26–32 (1987)Google Scholar
  49. 49.
    Jamialahmadi, M., Malayeri, M., Müller-Steinhagen, H.: Heat transfer to liquid-solid fluidized beds. Can. J. Chem. Eng. 73(4), 444–455 (1995)Google Scholar
  50. 50.
    Cooper, A., Suitor, J.W., Usher, J.D.: Cooling water fouling in plate heat exchangers. Heat Transf. Eng. 1(3), 50–55 (1980)Google Scholar
  51. 51.
    Novak, L.: Comparison of the rhine river and the Öresund sea water fouling and its removal by chlorination. J. Heat Transf. 104, 663–670 (1982)Google Scholar
  52. 52.
    Zettler, H.U., Weiss, M., Zhao, Q., Müller-Steinhagen, H.: Influence of surface properties/characteristics on fouling in plate heat exchangers. Heat Transf. Eng. 26, 3–17 (2005)Google Scholar
  53. 53.
    Delplace, F., Leuliet, J.C., Bott, T.R.: Influence of plate geometry on fouling of plate heat exchangers by whey protein solutions. In: Panchal, C.B., Bott, T.R., Somerscales, E.F.C., Toyama, S. (Hrsg.) Fouling Mitigation of Industrial Heat-Exchange Equipment, S. 565–576. Begell Hse. Inc. Danbury (1997)Google Scholar
  54. 54.
    Masri, M.A., Cliffe, K.R.: Investigation into the fouling of a plate and frame heat exchanger. In: Panchal, C.B., Bott, T.R., Somerscales, E.F.C., Toyama, S. (Hrsg.) Fouling Mitigation of Industrial Heat-Exchange Equipment, S. 549–561. Begell Hse. Inc. Danbury (1997)Google Scholar
  55. 55.
    Pritchard, A.M., Clarke, R.H., de Block, M.X.: Fouling of small passages in compact heat exchangers. In: Bott, T.R., et al., (Hrsg.) Fouling Mechanisms: Theoretical and Practical Aspects. Eurotherm Seminar 23, S. 47–56. Grenoble (1992)Google Scholar
  56. 56.
    Kew, P.: An Investigation into Fouling of a Printed Circuit Heat Exchanger. Future Practice Report 13, Energy Efficiency Enquiries Bureau, Harwell (1991)Google Scholar
  57. 57.
    Coulson, J.M., Richardson, J.F., Sinnott, R.K.: Chemical Engineering, Bd. 6. Pergamon Press, Oxford (1985)Google Scholar
  58. 58.
    Drew Chemical Corporation.: Principles of Industrial Water Treatment, 1. Aufl., S. 99–103. Boonton (1977)Google Scholar
  59. 59.
    Nalco Chemical Comp.: Nalco Water Handbook, 1. Aufl. McGraw-Hill, New York (1979)Google Scholar
  60. 60.
    DUBBEL.: Taschenbuch für den Maschinenbau, Bd. 2, 13. Aufl., S. 87–94. (1974)Google Scholar
  61. 61.
    Müller-Steinhagen, H.: Cooling water fouling in heat exchangers. Adv. Heat Tran. 33, 415–496 (1999)Google Scholar
  62. 62.
    Harris, A., Marshall, A.: The Evaluation of Scale Control Additives. Conference on Progress in the Prevention of Fouling in Industrial Plant. University of Nottingham (1981)Google Scholar
  63. 63.
    Krisher, A.S.: Raw Water Treatment in the CPI. Chemical Engineering, S. 79–98 (1978)Google Scholar
  64. 64.
    Watkinson, A.P.: Critical review of organic fluid fouling: Final Report No. ANL/CNSV-TM-208 Argonne National Laboratory, III. Illinois (1988)Google Scholar
  65. 65.
    Gillies, W.V.: Fouling and its control by chemical additives in hydrocarbon streams. In: Proceedings of the Institute of Corrosion Science and Technology, and Institute of Chemical Engineering Fouling Conferences. University of Surrey, Guildford (1979)Google Scholar
  66. 66.
    Mayo, F.R., Miller, A.A.: The oxidation of unsaturated compounds; the oxidation of Styrene. J. Am. Chem. Soc. 78, 1017–1022 (1956)Google Scholar
  67. 67.
    Mayo, F.R., Miller, A.A.: The oxidation of unsaturated compounds; reaction of Styrene Peroxide. J. Am. Chem. Soc. 78, 1023–1034 (1956)Google Scholar
  68. 68.
    Mayo, F.R., Miller, A.A., Russel, G.A.: The oxidation of unsaturated compounds. J. Am. Chem. Soc. 80, 2500–2507 (1958)Google Scholar
  69. 69.
    Mayo, F.R.: The oxidation of unsaturated compounds; the effect of oxygen pressure on the oxidation of Styrene. J. Am. Chem. Soc. 80, 2465–2480 (1958)Google Scholar
  70. 70.
    Mayo, F.R.: Gum and deposit formation from jet turbine and diesel fuels at 130 °C. Ind. Eng. Chem. Prod. Res. Dev. 25, 333–348 (1986)Google Scholar
  71. 71.
    Mayo, F.R., Stavinoha, L.L., Lee, G.H.: Source of jet fuel thermal oxidation tester deposits from an oxidized JP-8 fuel. Ind. Eng. Chem. Res. 27(2), 362–363 (1988)Google Scholar
  72. 72.
    Haluska, J.L.: Process Fouling Control by Effective Antifoulant Selection. Paper No. 153, Corrosion/76, Houston, March 22–26 (1976)Google Scholar
  73. 73.
    Miller, P.C., Bott, T.R.: The Removal of Biological Films Using Sodium Hypochloride. International Chemical Engineering Conference on Fouling. Science or Art? Surrey University, Guildford (1979)Google Scholar
  74. 74.
    Birchall, G.A.: Achieving Microbiological Control in Open Recirculating Cooling Systems. Conference on Progress in the Prevention of Fouling in Industrial Plant. University of Nottingham. Nottingham (1981)Google Scholar
  75. 75.
    Grier, J.C., Christensen, R.J.: Microbiological Control in Alkaline Cooling Water Systems. Presented at the National Association of Corrosion Engineers Annual Meeting, Toronto (1975)Google Scholar
  76. 76.
    Waite, T.D., Fagan, J.R: Summary of Biofouling Control Alternatives. Condenser Biofouling Control, Publisher J. Garey, Ann Arbor Science (1980)Google Scholar
  77. 77.
    Grade, R., Thomas, B.M.: The Influence and Control of Algae in Industrial Cooling Systems. International Chemical Engineering Conference on Fouling. Science or Art? Surrey University, Guildford (1979)Google Scholar
  78. 78.
    Knudsen, J.G., Jou, H.Y., Herman, K.W.: Heat Transfer Characteristics of an Electrically Heated Annular Test Section for Determining Fouling Resistances. DREW Industrial Division, Report CWI-TP-18. Pasadena, Maryland, (1985)Google Scholar
  79. 79.
    Mott, I.E., Bott, T.R., Stickler, D.J., Coakley, W.T.: Ultrasound in the control of biofilms in pipes. In: Fouling Mitigation of Industrial Heat Exchange Equipment, S. 213–227. Begell House Publisher, Danbury (1995)Google Scholar
  80. 80.
    SPIRELF System.: American European Consulting Company. HoustonGoogle Scholar
  81. 81.
    Haquet, I.: TURBOTAL-System for Reduced Fouling in Crude Oil Heat Exchangers. Proceedings Engineering Foundation Conference on Heat Exchanger Fouling, Snells Beach (1994)Google Scholar
  82. 82.
    HEATEX Radial Mixing Element.: A patented system developed by CAL GAVIN LTD., BirminghamGoogle Scholar
  83. 83.
    KALVO VOGLER GMBH.: Automatisches Reinigungssystem für Kondensatoren und RöhrenwärmeaustauscherGoogle Scholar
  84. 84.
    Someah, K.: On-line tube cleaning – the basics. Chem. Eng. Progress. New York 39–45 (1992)Google Scholar
  85. 85.
    TAPROGGE Report 84-15.: Test of TAPROGGE Condenser Tube Cleaning System to Prevent Silica and Calcium Carbonate Scaling. TAPROGGE GmbH (1984)Google Scholar
  86. 86.
    Eimer, K.: Recommendations for the Optimum Cleaning Frequency of the TAPROGGE Tube Cleaning System. TAPROGGE Technical Report 85-26 (1985)Google Scholar
  87. 87.
    ScaleWatcher.: Electronic scale elimination. B&D Ingenieursburo., Alphen aan den Rijn. Niederlande
  88. 88.
    Parkinson, G., Price, W.: Getting the most out of cooling water. Chem. Eng. 91(1), 22–25 (1984)Google Scholar
  89. 89.
    Donaldson, J., Grimes, S.: Lifting the scale from our pipes. New Scientist. 18, 43–46 (1988)Google Scholar
  90. 90.
    Cho, Y.I., Lee, S.H., Kim, W., Suh, S.: Physical water treatment for the mitigation of mineral fouling in cooling-tower water applications, in heat exchanger fouling and cleaning: fundamentals and applications. In: Watkinson, A.P., Müller-Steinhagen, H., Reza Malayeri, M. (Hrsg.) ECI Symposium Series, Volume RP1. (2003)
  91. 91.
    Hasson, D., Bramson, D.: Effectiveness of magnetic water treatment in suppressing CaCO3 scale deposition. Ind. Eng. Chem. Process. Des. Dev. 24, 588–592 (1985)Google Scholar
  92. 92.
    Söhnel, O., Mullin, J.: Some comments on the influence of a magnetic field on crystalline scale formation. Chem. Ind. 6, 356–358 (1988)Google Scholar
  93. 93.
    Limpert, G.J.C., Raber, J.L.: Test of non-chemical scale control devices in a once through system. Corrosion. 85, 250 (1985)Google Scholar
  94. 94.
    Physikalische Wasserbehandler.: Ein Schlag ins Wasser. Stiftung Warentest 1 (2000)Google Scholar
  95. 95.
    Betz Laboratories, Inc.: Handbook of Industrial Water Conditioning, 7. Aufl., S. 24–29. Trevose (1976)Google Scholar
  96. 96.
    Fryer, P.: The balance between chemical and physical effects in the cleaning of milk fouling deposits, School of Chemical Engineering, University of Birmingham, Birmingham (2004)Google Scholar
  97. 97.
    Hollands, H.F.: In-Service Cleaning of Boilers Using Chelants. Conference on Progress in the Prevention of Fouling in Industrial Plant. Nottingham University (1981)Google Scholar
  98. 98.
    French, M.A.: Chemical Cleaning in Practice. Conference on Progress in the Prevention of Fouling in Industrial Plant. Nottingham University, Nottingham (1981)Google Scholar
  99. 99.
    Roebuck, A.H., Bennett, C.A.: Heat transfer payback is a key to chemical cleaning choice. Oil Gas J. 9, 93–96 (1977)Google Scholar
  100. 100.
    Axsom, J.F.: Heat exchanger cleaning method cuts costs, ups throughput. Oil J. 6, 71–72 (1977)Google Scholar
  101. 101.
    Kho, T., Hughes, D., Müller-Steinhagen, H.: Plate Heat Exchanger Fouling. UK National Heat Transfer Conference (1997)Google Scholar
  102. 102.
    Conco Systems, Inc., 135 Sylvan St., Verona, PA 15147
  103. 103.
    Hovland, A.W.: Effective condenser cleaning improves system heat rate. Power Eng. 82, 49–50 (1978)Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Heat Transfer Research, Inc. (HTRI)GuildfordGroßbritannien

Section editors and affiliations

  • Thomas Wetzel
    • 1
  1. 1.Institut für Thermische VerfahrenstechnikKarlsruher Institut für Technologie (KIT)KarlsruheDeutschland

Personalised recommendations