Advertisement

VDI-Wärmeatlas pp 1061-1083 | Cite as

H3.7 Strömungssieden – Wärmeübergang nach der Siedekrise

  • Anastassios Katsaounis
Chapter
Part of the Springer Reference Technik book series (SRT)

Zusammenfassung

Dies ist ein Kapitel der 12. Auflage des VDI-Wärmeatlas.

Literatur

  1. 1.
    Groeneveld, D.C., Snoek, C.W.: Comprehensive examination of heat transfer correlations suitable for reactor safety analysis, Chapter 3. In: Hewitt, G.F., Delhaye, J.M., Zuber, N. (Hrsg.) Multiphase Science and Technology, Bd. 2. Hemisphere Publishing Corp./Springer, Washington, DC/Berlin (1986)Google Scholar
  2. 2.
    Mayinger, F.: Strömung und Wärmeübertragung in Gas­Flüssigkeitsgemischen. Springer, Wien (1984)Google Scholar
  3. 3.
    Katsaounis, A.: Post-dryout correlations and models compared to experimental data from different fluids. In: Proceedings of the XVIII International Symposium on Heat and Mass Transfer in Cryoengineering and Refrigeration. Hemisphere Publishing Corporation, Washington, DC (1987); ICHMT-Symposium, Sept. 1986, Dubrovnik, Yugoslavia. Preprint GKSS 86/E/41Google Scholar
  4. 4.
    Bergles, A.E., Collier, J.G., Delhaye, J.M., Hewill, G.F., Mayinger, F.: Two-Phase Flow and Heat Transfer in the Power and Process Industries. Hemisphere Publishing Corp., Washington, DC (1981)Google Scholar
  5. 5.
    Collier, J.G.: Post-dryout heat transfer -a review of the current position. Advanced Study Institute on Two-Phase Flows and Heat Transfer, Istanbul (1976)Google Scholar
  6. 6.
    Hetsroni, G.: Handbook of Multiphase Systems. Hemisphere Publishing Corp./McGraw-Hill Book Corp, Washington, DC/New York (1982)zbMATHGoogle Scholar
  7. 7.
    Groeneveld, D.C., Leung, L.K.H., Vasic, A.Z., Guo, Y.J., Cheng, S.C.: A look-up table for fully developed film-boiling heat transfer. Nucl. Eng. Des. 225, 83/97 (2003)CrossRefGoogle Scholar
  8. 8.
    Köhler, W.: Einfluß des Benetzungszustandes der Heizflache auf Wärmeübergang und Druckverlust in einem Verdampferrohr. Dissertation, Chair A of Thermodynamics, Technical University of Munich (1984)Google Scholar
  9. 9.
    Hein, D., Köhler, W.: The role of thermal non-equilibrium in post-dryout heat transfer. European Two-Phase Flow Group Meeting, Grenoble (1977)Google Scholar
  10. 10.
    Hein, D., Köhler, W.: A simple-to-use post-dryout heat transfer model accounting for thermal non-equilibrium. In: Proceedings of the 1st International Workshop on Fundamental Aspects of Post Dryout Heat Transfer, Salt Lake City (1986)Google Scholar
  11. 11.
    Gnielinski, V.: Neue Gleichungen für den Wärme- und den Stoffübergang in turbulent durchströmten Rohren and Kanälen. Forsch.-Ing. Wes. 41(1), 8–16 (1975)CrossRefGoogle Scholar
  12. 12.
    Groeneveld, D.C., Delorme, G.G.J.: Prediction of thermal non-equilibrium in the post-dryout regime. Nucl. Eng. Des. 36, 17/26 (1976)CrossRefGoogle Scholar
  13. 13.
    Saha, P.: A non-equilibrium heat transfer model for dispersed droplet post-dryout regime. Int. J. Heat Mass Transf. 23, 483/92 (1980)CrossRefGoogle Scholar
  14. 14.
    Chen, J.C., Ozkaynak, F.T., Sundaram, R.K.: Vapor heat transfer in post-CHF region including the effect of thermodynamic non-equilibrium. Nucl. Eng. Des. 51, 143–155 (1979)., and: A Phenomenological Correlation for Post-CHF Heat Transfer. Nuclear Regulatory Commission of USA NUREG-0237 (1977)CrossRefGoogle Scholar
  15. 15.
    Webb, W., Chen, J.C., Sundaram, R.K.: Vapor generation rate in non-equilibrium convective film boiling. In: International Heat Transfer Conference, Bd. 4, FB 45, S. 437–442. Munich (1982)Google Scholar
  16. 16.
    Herkenrath, H., Mörk-Mörkenstein, P., Jung, K., Weckermann, F.­J.: Wärmeübergang am Wasser bei erzwungener Strömung im Bereich von 140 bis 250 bar. EUR 3658d (1967)Google Scholar
  17. 17.
    Becker, K.M., Ling, C.H., Hedberg, S., Strand, G.: An Experimental Investigation of the Post Dryout Heat Transfer. KTH-NEL 33. Royal Institute of Technology, Stockholm (1983)Google Scholar
  18. 18.
    Schnittger, R.B.: Untersuchungen zum Wärmeübergang bei vertikalen und horizontalen Rohrströmungen im Post-dryout­Bereich. Dissertation, Technical University of Hannover 1982, cf. Chem.-Ing.­Techn. 54(10) (1982)Google Scholar
  19. 19.
    Hendricks, R.C., Graham, R.W., Hsu, Y.Y., Medeiros, A.A.: Correlation of hydrogen heat transfer in boiling and super­critical pressure states. ARS J. 32, 244–252 (1962)., and NASA Technical Notes D-765, May 1961CrossRefGoogle Scholar
  20. 20.
    Grigull, K.: Zustandsgrößen von Wasser und Wasserdampf in SI-Einheiten. Springer, Berlin (1982)Google Scholar
  21. 21.
    Katsaounis, A.: Zur Berechnung der Wärmeübertragung nach der Siedekrise. GKSS Research Center Report GKSS 88/E/46 (1988)Google Scholar
  22. 22.
    Groeneveld, D.C.: An Investigation of Heat Transfer in the Liquid-Deficient Regime. AECL-3281. Atomic Energy of Canada Limited (1969)Google Scholar
  23. 23.
    Miropol’skiy, Z.L.: Heat transfer in film boiling of a steam­water mixture in steam generating tubes. Teploenergetika 10(5), 49/53 (1963)Google Scholar
  24. 24.
    Dimmick, G.R.: Measurements of Drypatch Spreading and Post-Dryout Temperatures in a 3-Rod Bundle Cooled by Freon 12 in Vertical and Horizontal Orientation. AECL-6683. Atomic Energy of Canada Limited (1979)Google Scholar
  25. 25.
    Hynek, L., Rohsenow, W.M., Bergles, A.B..: Forced convec­tion dispersed flow film boiling. Massachusetts Institute of Technology -Heat Transfer Lab. Report No. DSR-70586.63 (1969)Google Scholar
  26. 26.
    Plummer, D.N., Iloeje, O.C., Rohsenow, W.M., Griffith, P., Ganic, E.: Post-critical heat transfer to flowing liquid in a vertical tube. Massachusetts Institute of Technology -Department of Mechanical Engineering Report No. 72718-91 (1974)Google Scholar
  27. 27.
    Hein, D., KastnerW., Köhler, W.: Influence of the orientation of a flow channel on the heat transfer in a boiler tube. European Two-Phase Flow Group Meeting, Paris (1982)Google Scholar
  28. 28.
    Taitel, Y., Dukler, A.E.: A model for predicting flow transition in horizontal and near horizontal gas-liquid flow. AIChE J. 22(1), 47–95 and 900 (1976)CrossRefGoogle Scholar
  29. 29.
    Wallis, G.B.: One-Dimensional Two-Phase Flow. McGraw-Hill, New York (1969)Google Scholar
  30. 30.
    Hein, D., Kastner, W., Köhler, W.: Einfluß der Rohrlänge auf den Wärmeübergang in einem Verdampferrohr. Brennst. Wärme-Kraft 34, 489–493 (1982)Google Scholar
  31. 31.
    Kefer, V., Köhler, W., Kastner, W.: Critical heat flux (CHF) and post-CHF heat transfer in horizontal and inclined evaporator tubes. Int. J. Multiphase Flow 15(3), 386–392 (1989)CrossRefGoogle Scholar
  32. 32.
    Kanzaka, M., Iwabuchi, M., Matsuo, T., Haneda, H., Yamamoto: Heat transfer characteristics of horizontal smooth tube in high pressure region. In: International Heat Transfer Conference, Bd. 5, S. 2173–2178. San Francisco (1986)Google Scholar
  33. 33.
    Auracher, H.: Partielles Filmsieden in Zweiphasenströmungen. Fortschr.-Ber. VDI, Reihe 3, Nr. 142. VDIVerlag (1987)Google Scholar
  34. 34.
    Bui, T.D., Dhir, V.K.: Transition boiling heat transfer on a vertical surface. Trans. ASME J. Heat Transfer 107, 756–763 (1985)CrossRefGoogle Scholar
  35. 35.
    Weber, P.: Experimentelle Untersuchungen zur Siedekrise und zum Übergangssieden von strömendem Wasser unter erhöhtem Druck. Dissertation, TU-Berlin. Fortschr.-Ber. VDI, Reihe 3, Nr. 226, VDIVerlag, Düsseldorf (1990)Google Scholar
  36. 36.
    Huang, X.: Vergleichende Untersuchung von Siedevorgängen aus temperaturgeregelten Messungen und Quenchingversuchen bei erzwungener Strömung von Wasser. Dissertation, TZ-Berlin. Fortschr.-Ber. VDI, Reihe 19, Nr. 65, VDIVerlag, Düsseldorf (1993)Google Scholar
  37. 37.
    France, D.M., Chan, I.S., Shin, S.K.: High-Pressure Transition Boiling in Internal Flows. J. Heat Transf. Trans. ASME. 109, 498–502 (1987)CrossRefGoogle Scholar
  38. 38.
    Katsaounis, A.: A Prediction Method of the transition boiling heat transfer in vertical tubes during forced convection in comparison to experimental data. In: Proceedings of the 2nd European Thermal-Science Conference, Bd. 1, S. 425–432, Rome, 29–31 May (1996)Google Scholar
  39. 39.
    Weber, P., Johannsen, K.: Convective transition boiling of water at medium pressure. In: Proceedings of the Ninth International Heat Transfer Conference, Bd. 6, S. 35–40, Jerusalem, Aug (1990)Google Scholar
  40. 40.
    Schroeder-Richter, D.: Ein analytischer Beitrag zur Anwendung der Thermodynamik irreversible Prozesse auf Siedephänomene. Dissertation, TU-Berlin. Fortschr.-Ber. VDI, Reihe 3, Nr. 251, VDIVerlag, Düsseldorf (1991)Google Scholar
  41. 41.
    Ragheb, H.S., Cheng, S.C., Groeneveld, D.C.: Observations in Transition Boiling of Subcooled Water under Forced Convective Conditions. Int. J. Heat Mass Transf. 24, 1127–1137 (1981)CrossRefGoogle Scholar
  42. 42.
    Cheng, S.C., Ng, W.W.L., Heng, K.T.: Measurement of Boiling Curves of Subcooled Water under Convective Conditions. Int. J. Heat Mass Transf. 21, 1387–1392 (1987)Google Scholar
  43. 43.
    Katsaounis, A., Fulfs, H., Kreubig, M.: Experimental results of critical heat flux measurements in 25-rod bundles with different types of grid spacers. In: Bankoff, S.G., Afgan, N.H. (Hrsg.) Proceedings of the Heat Transfer in Nuclear Reactor Safety. International Centre for Heat and Mass Transfer. Hemisphere Publishing Corporation, Washington, DC (1982)Google Scholar
  44. 44.
    Breem, B.P., Westwater, J.W.: Effect of diameter of horizontal tubes on film boiling heat transfer. Chem. Eng. Prog. 58, 67–72 (1962)Google Scholar
  45. 45.
    Groeneveld. D.C.: Inverted annular and low quality film boiling. A state-of-the-art report. In: Proceedings of the 1st International Workshop on Fundamental Aspects of Post-Dryout Heat Transfer, Salt Lake City (1984)Google Scholar
  46. 46.
    Leonard, J. E., Sun, K. H., Dix, G. E.: Low flow film boiling heat transfer on vertical surfaces. Solar and Nuclear Heat Transfer, AIChE-Symposium Series, No. 164, Bd. 73 (1976)Google Scholar
  47. 47.
    Denham, M. K.: Inverted Annular Film Boiling and the Bromley Model. AEEW-R, Bd. 1950. United Kingdom Atomic Energy Authority (1983)Google Scholar
  48. 48.
    Bressler, R.G.: A review of physical models and heat transfer correlations for free-convection film boiling. Adv. Cryog. Eng. 17(K-2), 382–406 (1972)Google Scholar
  49. 49.
    Hsu, Y.Y.: A review of film boiling at cryogenic tempera­tures. Adv. Cryog. Eng. 17, 361–381 (1972)Google Scholar
  50. 50.
    Sparrow, E.M., Cess, R.D.: The effect of subcooled boiling on laminar film boiling. Trans. ASME J. Heat Transf. 84, 149–156 (1962)CrossRefGoogle Scholar
  51. 51.
    Nishikawa, K.T., Ito, T.: Two-phase boundary layer treatment of free convective-film boiling. Int. J. Heat Mass Transf. 9, 103–115 (1966)CrossRefGoogle Scholar
  52. 52.
    Greitzer, E.M., Abernathy, F.H.: Film boiling on vertical surfaces. Int. J. Heat Mass Transf. 15, 475–491 (1972)CrossRefGoogle Scholar
  53. 53.
    Lauer, H.: Untersuchung des Wärmeübergangs und der Wiederbenetzung beim Abkühlen heißer Metallkörper. EUR. 5702d (1976)Google Scholar
  54. 54.
    Lauer, H., Hufschmidt, W.: Heat transfer and surface rewet during quenching. Advanced Study Institute on Two-Phase Flows and Heat Transfer, Istanbul (1976)Google Scholar
  55. 55.
    Bromley, L.A., Leroy, N.R., Robbers, J.A.: Heat transfer in forced convection film boiling. Ind. Eng. Chem. 45(I), 2639–2646 (1953)CrossRefGoogle Scholar
  56. 56.
    Motte, E.I., Bromley, L.A.: Film boiling of flowing sub­cooled liquids. Ind. Eng. Chem. 49(II), 1921–1928 (1957)CrossRefGoogle Scholar
  57. 57.
    Sudo, Y.: Film boiling heat transfer during reflood phase in postulated PWR-LOCA. J. Nucl. Sci. Technol. 7, 516–530 (1980)CrossRefGoogle Scholar
  58. 58.
    Stewart, J.C., Groeneveld, D.C.: Low quality and sub­cooled film boiling of water at elevated pressures. Nucl. Eng. Des. 67, 259–272 (1981)CrossRefGoogle Scholar
  59. 59.
    Raznjevic, K.: Thermodynamische Tabellen. VDIVerlag, Düsseldorf (1977)Google Scholar
  60. 60.
    Vargaftik, N.B.: Tables on the Thermo Physical Properties of Liquids and Gases. Hemisphere Publishing Corp., Washington, DC/London (1975)Google Scholar
  61. 61.
    Leidenfrost, J.G.: On the fixation of water in diverse fire. Int. J. Heat Mass Transf. 9, 1153–1166 (1966)CrossRefGoogle Scholar
  62. 62.
    Schroeder-Richter, D., Bartsch, G.:The Leidenfrost Phenomenon Caused by a Thermodynamical Effect of Transition Boiling: A revised Problem of Non-equilibrium Thermodynamics. In: Witte, L.C., Avedisian, C.T (Hrsg.) Proceedings of the Fundamentals of Phase Change, Boiling and Condensation, New York, ASME-HTD, Bd. 136, S. 13–20 (1990)Google Scholar
  63. 63.
    Hein, D,. Kefer, V., Liebert, H.: Maximum wetting temperatures up to critical pressure. In: Proceedings of the 1st International Workshop of Fundamental Aspects of Post-Dryout Heat Transfer, Salt Lake City (1984)Google Scholar
  64. 64.
    Kefer, V.: Der Einfluß des Druckes auf das Benetzungsverhalten. Diploma thesis A. Institute of Thermodynamics, Technical University of Munich (1982)Google Scholar
  65. 65.
    Groeneveld, D.C., Stewart, J.C.: The minimum film boiling temperature for water during film boiling collapse. In: International Heat Transfer Conference Munich, Paper FB 37, Bd. 4, S. 393–398 (1982)Google Scholar
  66. 66.
    Feng, Q., Johannsen, K.: The high-temperature limit of the transition boiling regime for water in vertical upflow at medium pressure. In: Proceedings of the Ninth International Heat Transfer Conference, Bd. 6, S. 29–34, Jerusalem, Israel, Aug (1990)Google Scholar
  67. 67.
    Hein, D.: Modellvorstellungen zum Wiederbenetzen durch Fluten. Dissertation, Technical University of Hanover (1981)Google Scholar
  68. 68.
    Yao, S., Henry, R.E.: An investigation of the minimum film boiling temperature on horizontal surfaces. Trans. ASME. J. Heat Transf. 100, 260–267 (1978)CrossRefGoogle Scholar
  69. 69.
    Michiyoshi, I., Makino, K.: Heat transfer characteristics of evaporation of a liquid droplet on heated surfaces. Int. J. Heat Mass Transf. 21, 605–613 (1978)CrossRefGoogle Scholar
  70. 70.
    Chowdhury, K., Winterton, R.H.: Transition boiling on surfaces of different surface energy. In: Proceedings of the 1st International Workshop on Fundamental Aspects of Post-Dryout Heat Transfer, Salt Lake City (1984)Google Scholar
  71. 71.
    Emmerson, G.S., Snoek, C.W.: The effect of pressure on the Leidenfrost point of discrete drops of water and freon on a brass surface. Int. J. Heat Mass Transf. 21, 1081–1086 (1978)CrossRefGoogle Scholar
  72. 72.
    Feng, Q.: Experimentelle Untersuchungen zur maximalen Temperatur des Übergangssiedens bei erzwungener Wasserströmung bis 1,2 MPa. Dissertation, TU-Berlin. Fortschr.-Ber. VDI, Reihe 3, Nr. 265. VDIVerlag, Düsseldorf (1991)Google Scholar
  73. 73.
    Bradfield, W.S.: On the effect of subcooling on wall superheat in pool boiling. J. Heat Transf. ASME. 89, 269–270 (1967)CrossRefGoogle Scholar
  74. 74.
    Henry, R.E.: A correlation of the minimum film boiling temperature. Heat Transfer -Research and Design. AIChE-Symposium Series No. 138, Bd. 70 (1974)Google Scholar
  75. 75.
    Berenson, P.J.: Film-boiling heat transfer from a horizontal surface. Trans. ASME J. Heat Transfer 83(3), 351–356 (1961)Google Scholar
  76. 76.
    Kalinin, E.K., Yarkho, A., Berlin, I.I., Kochelaev, Yu., Kostyuk, V. V.: Investigations of the crisis of film boiling channels. In: Proceedings of the Two-Phase Flow and Heat Transfer in Rod Bundles. ASME-Winter Annual Meeting, Los Angeles (1969)Google Scholar
  77. 77.
    Komnos, A.: Ein thermohydrodynamisches Modell zur Wiederbenetzung. Dissertation, A. Institute of Thermodynamics, Technical University of Munich (1981)Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Anastassios Katsaounis
    • 1
  1. 1.BerlinDeutschland

Section editors and affiliations

  • Peter Stephan
    • 1
  1. 1.Institut für Technische Thermodynamik, Technische Universität DarmstadtDarmstadtDeutschland

Personalised recommendations