VDI-Wärmeatlas pp 447-510 | Cite as
D3.2 Thermophysikalische Stoffwerte sonstiger reiner Fluide bei Sättigung
Chapter
First Online:
Zusammenfassung
Dies ist ein Kapitel der 12. Auflage des VDI-Wärmeatlas.
Literatur
- 1.Ahrendts, J., Baehr, H.D.: Die thermodynamischen Eigenschaften von Ammoniak. VDI-Forschungsheft 596. VDI-Verlag, Düsseldorf (1979)Google Scholar
- 2.Angus, S., Armstrong, B., De Reuck, K.M.: Chlorine – Tentative Tables. IUPAC Chemical Data Series, No. 31. Pergamon Press, Oxford (1985)Google Scholar
- 3.Assael, M.J., Ramires, M.L.V., Nietro de Castro, C.A., Wakeham, W.A.: Benzene: a further liquid thermal conductivity standard. J. Phys. Chem. Ref. Data 19, 113–117 (1990)CrossRefGoogle Scholar
- 4.Baidakov, V.G., Sulla, I.I.: Surface tension of propane and isobutane at near-critical temperatures. Russ. J. Phys. Chem. 59, 551–554 (1985)Google Scholar
- 5.Bondi, A.: Estimation of the heat capacity of liquids. Ind. Eng. Chem. Fundam. 5, 442–449 (1966)CrossRefGoogle Scholar
- 6.Borreson, R.W., Schorr, G.R., Yaws, C.L.: Correlation constants for chemical compounds – heat capacities of gases. Chem. Eng. 16, 79–81 (1976)Google Scholar
- 7.Brock, J.R., Bird, R.B.: Surface tension and the principle of corresponding states. AIChE J. 1, 174–177 (1955)CrossRefGoogle Scholar
- 8.Bücker, D., Wagner, W.: A reference equation of state for the thermodynamic properties of ethane for temperatures from the melting line to 675 K and pressures up to 900 MPa. J. Phys. Chem. Ref. Data 35, 205–266 (2006)CrossRefGoogle Scholar
- 9.Bücker, D., Wagner, W.: Reference equations of state for the thermodynamic properties of fluid phase n-butane and isobutane. J. Phys. Chem. Ref. Data 35, 929–1019 (2006)CrossRefGoogle Scholar
- 10.Calado, J.C.G., McLure, I.A., Soares, V.A.M.: Surface tension for octafluorocyclobutane, n-butane and their mixtures from 233 K to 254 K, and vapour pressure, excess gibbs function and excess volume for the mixture at 233 K. Fluid Phase Equilib. 2, 199–213 (1978)CrossRefGoogle Scholar
- 11.Carmichael, L.T., Jacobs, J., Sage, B.H.: Thermal conductivity of fluid n-pentane. J. Chem. Eng. Data 14, 31–37 (1969)CrossRefGoogle Scholar
- 12.Chase, J.D.: Persönliche Mitteilung (1979)Google Scholar
- 13.Chen, N.H.: Generalized correlation for latent heat of vaporization. J. Chem. Eng. Data 10, 207–210 (1965)CrossRefGoogle Scholar
- 14.Chung, T.H., Lee, L.L., Starling, K.E.: Ind. Eng. Chem. Fundam. 23, 8 (1984)CrossRefGoogle Scholar
- 15.Daubert, T.E., Danner, R.P.: Data Compilation Tables of Properties of Pure Components. American Institute of Chemical Engineers, New York (1985)Google Scholar
- 16.De Reuck, K.M.: International Thermodynamic Tables of the Fluid State-11 Fluorine. International Union of Pure and Applied Chemistry. Pergamon Press, Oxford (1990)Google Scholar
- 17.Dillon, H.E., Penoncello, S.G.: A fundamental equation for calculation of the thermodynamic properties of ethanol. Int. J. Thermophys. 25, 321–335 (2004)CrossRefGoogle Scholar
- 18.Dixon, J.A., Schiesser, R.W.: Viscosities of benzene-d6 and cyclohexane-d12. J. Phys. Chem. 58, 430–432 (1954)CrossRefGoogle Scholar
- 19.Edminster, W.C.: Applied Hydrocarbon Thermodynamics, Bd. 56. Gulf Publishing, Houston (1961)Google Scholar
- 20.Elverum, G.W., Doescher, R.N.: Physical properties of liquid fluorine. J. Chem. Phys. 20, 1834–1836 (1952)CrossRefGoogle Scholar
- 21.Fillipov, L.P., Nefedov, S.N., Kolykalova, E.A.: An experimental investigation into the complex of thermophysical properties of liquids. Inzh.-Fiz. Zh. 38, 644–650 (1980)Google Scholar
- 22.Friend, D.G., Ingham, H., Ely, J.F.: Thermophysical properties of ethane. J. Phys. Chem. Ref. Data 20, 275–347 (1991)CrossRefGoogle Scholar
- 23.Gallant, R.W.: Physical Properties of Hydrocarbons, vols. 1 and 2. Gulf Publishing, Houston (1970)Google Scholar
- 24.Geist, J.M., Cannon, M.R.: Viscosities of pure hydrocarbons. Ind. Eng. Chem. Anal. Ed. 18, 611–613 (1946)CrossRefGoogle Scholar
- 25.Golubev, I.F.: Viscosity of Gases and Gas Mixtures. Fizmat Press, Moscow (1959)Google Scholar
- 26.Golubev, I.F., Agaev, N.A.: Viscosity of Limiting Hydrocarbons. Azerbaydzhan State Press, Baku (1964)Google Scholar
- 27.Gomez-Nieto, M., Thodos, G.: Generalized treatment for the vapour pressure behaviour of polar and hydrogen-bonding compounds. Can. J. Chem. Eng. 55, 445–449 (1977)CrossRefGoogle Scholar
- 28.Gomez-Nieto, M., Thodos, G.: Generalized vapour pressure equation for nonpolar substances. Ind. Eng. Chem. Fundam. 17, 45–51 (1978)CrossRefGoogle Scholar
- 29.Goodwin, R.D.: Benzene thermophysical properties from 279 to 900 k at pressures to 1000 bar. J. Phys. Chem. Ref. Data 17, 1541–1635 (1988)Google Scholar
- 30.Gorin, C.E., Yaws, C.L.: correlation constants for chemical compounds – heat of vaporization. Chem. Eng. 83, 85–87 (1976)Google Scholar
- 31.GPSA Engineering Data Book: Gas Processors Suppliers Association. Tulsa (1977)Google Scholar
- 32.Gross, U., Song, Y.W., Hahne, E.: Thermal conductivity of the new refrigerants R134a, R152a and R123 measured by the transient hot-wire method. Int. J. Thermophys. 13, 957–983 (1992)CrossRefGoogle Scholar
- 33.Gunn, R.D., Yamada, T.A.: Corresponding states correlation of saturated liquid volumes. AIChE J. 17, 1341–1345 (1971)CrossRefGoogle Scholar
- 34.Haynes, W.M.: Measurements of the viscosity of compressed gaseous and liquid fluorine. Physica. 76, 1–20 (1974)CrossRefGoogle Scholar
- 35.Ho, C.Y.: Data Series on Material Properties, Vol. 5: Properties of Inorganic and Organic Fluids (1988)Google Scholar
- 36.Holland, P.M., Eaton, B.E., Hanley, H.J.M.: A correlation of the viscosity and thermal conductivity data of gaseous and liquid ethylene. J. Phys. Chem. Ref. Data 12, 917–932 (1983)CrossRefGoogle Scholar
- 37.Horvath, A.L.: Physical Properties of Inorganic Compounds SI Units. Crane, Russak & Company, New York (1975)Google Scholar
- 38.Hu, J.-H., Johnston, H.L., White, D.: The density and surface tension of liquid fluorine between 66 and 80 K. J. Am. Soc. 76, 2584–2586 (1954)CrossRefGoogle Scholar
- 39.Huber, M.L., Laesecke, A.: Correlation for the viscosity of pentafluoroethane (R125) from the triple point to 500 K at pressures up to 60 MPa. Ind. Eng. Chem. Res. 45, 4447–4453 (2006)CrossRefGoogle Scholar
- 40.Jasper, J.J.: The surface tension of pure liquid compounds. J. Phys. Chem. Ref. Data 1, 841–1009 (1972)CrossRefGoogle Scholar
- 41.Johnson, F.M.J., McIntosh, D.: Liquid chlorine. J. Am. Chem. Soc. 31, 1138–1144 (1909)CrossRefGoogle Scholar
- 42.Jossi, J.A., Stiel, L.I., Thodos, G.: The viscosity of pure substances in the dense gaseous and liquid phases. AIChE J. 8, 59–63 (1962)CrossRefGoogle Scholar
- 43.Kamei, A., Beyerlein, S.W., Jacobsen, R.T.: Application of nonlinear regression in the development of a wide range formulation for HCFC-22. Int. J. Thermophys. 16, 1155–1164 (1995)CrossRefGoogle Scholar
- 44.Katti, R.S., Jacobsen, R.T., Stewart, R.B., Jahangiri, M.: Thermodynamic properties for neon for temperatures from the triple point to 700 K at pressures to 700 MPa. Adv. Cryog. Eng. 31, 1189–1197 (1986)CrossRefGoogle Scholar
- 45.Klein, S.A., McLinden, M.O., Laesecke, A.: An improved extended corresponding states method for estimation of viscosity of pure refrigerants and mixtures. Int. J. Refrig. 20, 208–217 (1997)CrossRefGoogle Scholar
- 46.Knappstad, B., Skjolsvik, P.A., Oye, H.A.: Viscosity of pure hydrocarbons. J. Chem. Eng. Data 34, 37–43 (1989)CrossRefGoogle Scholar
- 47.Kraus, R., Luettmer-Strahtmann, J., Sengers, J., Stephan, K.: Transport properties of 1,1,1,2-tetrafluorethane (R134a). Int. J. Thermophys. 14, 951–988 (1993)CrossRefGoogle Scholar
- 48.Kudchadker, A.P., Alani, G.H., Zwolinski, B.J.: Critical constants of organic substances. Chem. Rev. 68, 729–735 (1968)CrossRefGoogle Scholar
- 49.Kumagi, A., Takahashi, S.: Viscosity of saturated liquid fluorocarbon refrigerants from 273 to 353 K. Int. J. Thermophys. 12, 105–117 (1991)CrossRefGoogle Scholar
- 50.Latini, G., Laurenti, L., Marcotullio, F., Pierpaoli, P.: Liquid dynamic viscosity: a general method with application to refrigerant and refrigerant mixtures. Int. J. Refrig. 13, 248–255 (1990)CrossRefGoogle Scholar
- 51.Leachman, J.W., Jacobsen, R.T., Penoncello, S.G., Lemmon, E.W.: Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen. J. Phys. Chem. Ref. Data 38, 721 (2009)CrossRefGoogle Scholar
- 52.Lee, B.I., Kesler, M.G.: A generalized thermodynamic correlation based on three-parameter corresponding states. AIChE J. 21, 510–527 (1975)CrossRefGoogle Scholar
- 53.Lemmon, E.W.: The Surface Tension of Ethane. Private Communication, NIST, Boulder (2011) – see also Mulero, A., Cachadiña, I., Parra, M.I.: Recommended correlations for the surface tension of common fluids. J. Phys. Chem. Ref. Data 41, 043105 (2012)Google Scholar
- 54.Lemmon, E.W., Jacobsen, R.T.: Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air. Int. J. Thermophys. 25, 21–69 (2004)CrossRefGoogle Scholar
- 55.Lemmon, E.W., Jacobsen, R.T.: A new functional form and new fitting techniques for equations of state with application to pentafluoroethane (HFC-125). J. Phys. Chem. Ref. Data 34, 69–108 (2005)CrossRefGoogle Scholar
- 56.Lemmon, E.W., Penoncello, S.G.: Adv. Cryog. Eng. 39, 1927–1934 (1994)CrossRefGoogle Scholar
- 57.Lemmon, E.W., Span, R.: Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51, 785–850 (200 The surface tension of air and air component mixtures 6)Google Scholar
- 58.Lemmon, E.W., McLinden, M.O., Wagner, W.: Thermodynamic properties of propane. III. A reference equation of state for temperatures from the melting line to 650 K and pressures up to 1000 MPa. J. Chem. Eng. Data 54, 3141–3180 (2009)CrossRefGoogle Scholar
- 59.Letsou, A., Stiel, L.I.: Viscosities of saturated nonpolar liquids at elevated pressures. AIChE J. 19, 409–411 (1973)CrossRefGoogle Scholar
- 60.Liquide, L.: Gas Encyclopaedia. Elsevier, Amsterdam (1976)Google Scholar
- 61.Livingston, J., Morgan, R., Owen, F.T.: The weight of a falling drop and the laws of tate. J. Am. Chem. Soc. 33, 1713 (1911)CrossRefGoogle Scholar
- 62.Lydersen, A.L.: Estimation of Critical Properties of Organic Compounds. University of Wisconsin College of Engineering, Madison (1955). Eng. Exp. Stn. Rep. 3Google Scholar
- 63.Lyman, T.J., Danner, R.P.: Correlation of liquid heat capacities with a four-parameter corresponding states method. AIChE J. 22, 759–765 (1976)CrossRefGoogle Scholar
- 64.Mamedov, A.M.: Thermal-conductivity of six aromatic hydrocarbons. Inzh.-Fiz. Zh. 34, 465–470 (1978)Google Scholar
- 65.Marsh, K., Perkins, R., Ramires, M.L.V.: Measurement and correlation of the thermal conductivity of propane from 86 to 600 K at pressures to 70 MPa. J. Chem. Eng. Data 47, 932–940 (2002)CrossRefGoogle Scholar
- 66.McLinden, M.O., Klein, S.A., Perkins, R.: An extended corresponding states model for the thermal conductivity of refrigerants and refrigerant mixtures. Int. J. Refrig. 23, 43–63 (2000)CrossRefGoogle Scholar
- 67.Miller Jr., J.W., Yaws, C.L.: Correlation constants for liquids – surface tension. Chem. Eng. 83(22), 127–129 (1976)Google Scholar
- 68.Miller Jr., J.W., Gordon, R.S., Yaws, C.L.: Correlation constants for liquids – heat capacities. Chem. Eng. 83(25), 129–131 (1976)Google Scholar
- 69.Miller Jr., J.W., McGinley, J.J., Yaws, C.L.: Correlation constants for liquids – thermal conductivities. Chem. Eng. 83(25), 133–135 (1976)Google Scholar
- 70.Miller Jr., J.W., Gordon, R.S., Yaws, C.L.: Correlation constants for chemical compounds – thermal conductivity of gas. Chem. Eng. 153–155 (1976)Google Scholar
- 71.Miller Jr., J.W., Gordon, R.S., Yaws, C.L.: Correlation constants for chemical compounds – gas viscosity. Chem. Eng. 86(24), 155–157 (1976)Google Scholar
- 72.Miller Jr., J.W., Gordon, R.S., Yaws, C.L.: Physical and thermodynamic properties. Correlation constants for chemical compounds – liquid viscosity. Chem. Eng. 86(24), 157–159 (1976)Google Scholar
- 73.Miller, J.W., Yaws, C.L., Shah, P.N., Schorr, G.R., Patel, P.M.: Physical and thermodynamic properties. 24. Correlation constants for chemical compounds Chem. Eng. 83(25), 153 (1976)Google Scholar
- 74.Misic, D., Thodos, G.: The thermal conductivity of hydrocarbon gases at normal pressure. AIChE J. 7, 264–267 (1961)CrossRefGoogle Scholar
- 75.Nabizadeh, H., Mayinger, F.: Viscosity of gaseous R123. High Temp. High Press 24, 221–230 (1992)Google Scholar
- 76.Needham, D.P., Ziebland, H.: Ammonia and its anomalous behaviour in the vicinity of the critical point. Int. J. Heat Mass Transf. 8, 1387–1411 (1965)CrossRefGoogle Scholar
- 77.Okada, M., Higashi, Y.: Surface tension correlation of HFC-134a and HCFC-123. Progress Report to IEA Annex 18, Boulder (1994)Google Scholar
- 78.Okada, M., Higashi, Y.: Experimental surface tensions for HFC-32, HCFC-124, HFC-125, HCFC-141b, HCFC-142b, and HFC-152a. Int. J. Thermophys. 16, 791–800 (1995)CrossRefGoogle Scholar
- 79.Okada, M., Watanabe, K.: Surface tension correlations for several fluorocarbon refrigerants. Heat Transf. Jpn. Res. 17, 35–52 (1988)Google Scholar
- 80.Okubo, T., Nagashima, A.: Measurement of the viscosity of HCFC-123 in the temperature range 233–418 K and at pressures up to 20 MPa. Int. J. Thermophys. 13, 401–410 (1992)CrossRefGoogle Scholar
- 81.Overhoff, U.: Development of a new equation of state for the fluid region of propene for temperatures from the melting line to 575 K with pressures to 1000 MPa as well as software for the computation of thermodynamic properties of fluids. Ph.D. Dissertation, Ruhr-University, Bochum (2006)Google Scholar
- 82.Pennington, R.E., Kobe, K.A.: The thermodynamic properties of acetone. J. Am. Chem. Soc. 79, 300–305 (1957)CrossRefGoogle Scholar
- 83.Penoncello, S.G., Goodwin, A.R.H., Jacobsen, R.T.: A thermodynamic property formulation for cyclohexane. Int. J. Thermophys. 16, 519–531 (1995)CrossRefGoogle Scholar
- 84.Perkins, R.A.: Measurement and correlation of the thermal conductivity of isobutane from 114 K to 600 K at pressures to 70 MPa. J. Chem. Eng. Data 47, 1272–1279 (2002)CrossRefGoogle Scholar
- 85.Perkins, R.A., Huber, M.L.: Measurement and correlation of the thermal conductivity of pentafluoroethane (R125) from 190 K to 512 K at pressures to 70 MPa. J. Chem. Eng. Data 51, 898–904 (2006)CrossRefGoogle Scholar
- 86.Perkins, R.A., Ramires, M.L.V., Nieto de Castro, C.A., Cusco, L.: Measurement and correlation of the thermal conductivity of butane from 135 K to 600 K at pressures to 70 MPa. J. Chem. Eng. Data 47, 1263–1271 (2002)CrossRefGoogle Scholar
- 87.Perry, J.H.: Chemical Engineer’s Handbook, 3. Aufl.. McGraw-Hill, New York (1950)Google Scholar
- 88.Perry, R.H., Chilton, C.H.: Chemical Engineer’s Handbook, 5. Aufl.. McGraw-Hill, New York (1973)Google Scholar
- 89.Reid, R.C., Prausnitz, J.M., Sherwood, T.K.: The Properties of Gases and Liquids, 3. Aufl.. McGraw-Hill, New York (1977)Google Scholar
- 90.Reuck, K.M., De Craven, R.J.B.: International Tables of the Fluid State, Vol. 12: Methanol. Hemisphere, London (1993)Google Scholar
- 91.Rihani, D.N., Doraiswamy, L.K.: Estimation of heat capacity of organic compounds from group contributions. Ind. Eng. Chem. Fundam. 4, 17–21 (1965)CrossRefGoogle Scholar
- 92.Robbins, L.A., Kingrea, C.L.: Estimate thermal conductivity. Hydrocarb. Proc. Pet. Ref. 41(5), 133–136 (1962)Google Scholar
- 93.Sakiadis, B.C., Coates, J.: Studies in thermal conductivity of liquids. AIChE J. 1, 275–288 (1955)CrossRefGoogle Scholar
- 94.Sellschopp, W.: Z. Ver. Dt. Ing. 75, 69 (1935)Google Scholar
- 95.Setzmann, U., Wagner, W.: A new equation of state and tables of thermodynamic properties for methane covering the range from the melting line to 625 K at pressures up to 1000 MPa. J. Phys. Chem. Ref. Data 20, 1061–1155 (1991)CrossRefGoogle Scholar
- 96.Shah, P.N., Yaws, C.L.: Densities of liquids. Chem. Eng. 25, 131–133 (1976)Google Scholar
- 97.Smukala, J., Span, R., Wagner, W.: A new equation of state for ethylene covering the fluid region for temperatures from the melting line to 450 K at pressures up to 300 MPa. J. Phys. Chem. Ref. Data 29, 1053–1122 (2000)CrossRefGoogle Scholar
- 98.Soares, V.A.M., Almeida, B.J.V.S., McLure, I.A., Higgins, R.A.: Surface tension of pure and mixed simple substances at low temperature. Fluid Phase Equilib. 32, 9–16 (1986)CrossRefGoogle Scholar
- 99.Somayajulu, G.R.: A generalized equation for surface tension from the triple point to the critical point. Int. J. Thermophys. 9, 559–566 (1988)CrossRefGoogle Scholar
- 100.Somayajulu, G.R.: A new equation for enthalpy of vaporization from the triple point to the critical point. Int. J. Thermophys. 9, 567–574 (1988)CrossRefGoogle Scholar
- 101.Span, R., Wagner, W.: Equations of state for technical applications. II. Results for nonpolar fluids. Int. J. Thermophys. 24, 41–109 (2003)CrossRefGoogle Scholar
- 102.Stairs, R.A., Sienko, M.J.: Surface tension of ammonia and of solutions of alkali halides in ammonia. J. Am. Chem. Soc. 78, 920–923 (1956)CrossRefGoogle Scholar
- 103.Stephan, K., Hildwein, H.: Recommended Data of Selected Compunds and Binary Mixtures. Chemistry Data Series, Bd. 4: Part 1 + 0032. DECHEMA (1987)Google Scholar
- 104.Stiel, L.I., Thodos, G.: The viscosities of nonpolar gases at normal pressures. AIChE J. 7, 611–615 (1961)CrossRefGoogle Scholar
- 105.Stiel, L.I., Thodos, G.: The viscosity of polar gases at normal pressures. AIChE J. 8, 229–232 (1962)CrossRefGoogle Scholar
- 106.Stiel, L.I., Thodos, G.: The viscosity of polar substances in the dense gaseous and liquid regions. AIChE J. 10, 275–277 (1964)CrossRefGoogle Scholar
- 107.Stiel, L.I., Thodos, G.: The thermal conductivities of nonpolar substances in the dense gaseous and liquid regions. AIChE J. 10, 26–29 (1964)CrossRefGoogle Scholar
- 108.Takahashi, M., Yokoyama, C., Takahshi, S.: Viscosities of gaseous R13B1, R142b, and R152a. J. Chem. Eng. Data 32, 98–103 (1987)CrossRefGoogle Scholar
- 109.Technical Data Book-Petroleum Refining. American Petroleum Institute Division of Refining, Washington, DC (1970)Google Scholar
- 110.Tegeler, Ch., Span, R., Wagner, W.: A new equation of state for argon covering the fluid region for temperatures from the melting line to 700 K at pressures up to 1000 MPa. J. Phys. Chem. Ref. Data 28, 779–850 (1999)Google Scholar
- 111.Thinh, T.P., Duran, J.L., Ramalho, R.S., Kaliaguine, S.: Equations improve Cp° predictions. Hydrocarb. Process 50, 98–104 (1971)Google Scholar
- 112.Tillner-Roth, R.: A fundamental equation of state for 1,1-difluorethane (HFC-152a). Int. J. Thermophys. 16, 91–100 (1995)CrossRefGoogle Scholar
- 113.Tillner-Roth, R., Baehr, H.D.: An international standard formulation for the thermodynamic properties of 1,1,1,2-tetrafluorethane (HFC-134a) for temperatures from 170 K to 455 K and pressures up to 70 MPa. J. Phys. Chem. Ref. Data 23, 657–729 (1994)CrossRefGoogle Scholar
- 114.Tillner-Roth, R., Harms-Watzenberg, F., Baehr, H.D.: Eine neue Fundamentalgleichung für Ammoniak. DKV-Tagungsbericht 20, 167–181 (1993)Google Scholar
- 115.Timmermans, J.: Physico-Chemical Constants of Pure Organic Compounds, S. 303–325. Elsevier, New York (1950)Google Scholar
- 116.Touloukian, Y.S., Makitu, T.: Thermophysical Properties of Matter, Bd. 6. IFI/Plenum, New York (1970)Google Scholar
- 117.Touloukian, Y.S., Liley, P.E., Saxena, S.C.: Thermophysical Properties of Matter, Bd. 3. IFI/Plenum, New York (1970)Google Scholar
- 118.Touloukian, Y.S., Powell, R.W., Ho, C.Y., Klemens, P.G.: Thermophysical Properties of Matter, Bd. 1. IFI/Plenum, New York (1970)Google Scholar
- 119.Touloukian, Y.S., Liley, P.E., Saxena, S.C.: Thermophysical Properties of Matter, Bd. 6. IFI/Plenum, New York (1970)Google Scholar
- 120.Touloukian, Y.S., Liley, P.E., Hestermans, P.: Thermophysical Properties of Matter, Bd. 11. IFI/Plenum, New York (1975)Google Scholar
- 121.Touloukian, Y.S., Saxena, S.C., Hestermans, P.: Thermophysical Properties of Matter, Bd. 11. IFI/Plenum, NewYork (1975)Google Scholar
- 122.Tsvetkov, O.B., Laptev, Yu.A., Asambaev, A.G.: Thermal conductivity of refrigerants R123, R134a, and R125 at low temperatures. Int. J. Thermophys. 15, 203–214 (1994)Google Scholar
- 123.Tufeu, R., Clifford, A.A.: Thermal conductivity of gaseous and liquid ammonia. J. Heat Transf. 110, 992–993 (1988)CrossRefGoogle Scholar
- 124.Van der Gulik, P.S.: The viscosity of the refrigerant 1,1-difluoroethane along the saturation line. Int. J. Thermophys. 12, 105–117 (1993)Google Scholar
- 125.Vargaftik, N.B.: Tables on the Thermophysical Properties of Liquids and Gases, 2. Aufl. Hemisphere Publishing, Washington, DC (1975)Google Scholar
- 126.Velzen, D., Van Cardozo, R.L., Langenkamp, H.: A liquid viscosity temperature chemical constitution relation for organic compounds. Ind. Eng. Chem. Fundam. 11, 20–25 (1972)CrossRefGoogle Scholar
- 127.Vines, R.G., Bennett, L.A.: The thermal conductivity of organic vapors. The relationship between thermal conductivity and viscosity, and the significance of the euken faktor. J. Chem. Phys. 22, 360–366 (1954)CrossRefGoogle Scholar
- 128.Vogel, E., Kuechenmeister, C., Bich, E., Laesecke, A.: Reference correlation of the viscosity of propane. J. Phys. Chem. Ref. Data 27, 947–970 (1998)CrossRefGoogle Scholar
- 129.Vogel, E., Kuechenmeister, C., Bich, E.: Viscosity for n-butane in the fluid region. High Temp. High Press 31, 173–186 (1999)Google Scholar
- 130.Vogel, E., Kuechenmeister, C., Bich, E.: Viscosity correlation for isobutane over wide ranges of the fluid region. Int. J. Thermophys. 21, 343–356 (2000)CrossRefGoogle Scholar
- 131.Wakeham, W.A., Fenghour, A.: The viscosity of ammonia, persönliche Mitteilung. (Artikel im Druck bei J. Phys. Chem. Ref. Data.) (1995)Google Scholar
- 132.Watson, K.M.: Thermodynamics of the liquid state. Ind. Eng. Chem. 35, 398–400 (1943)CrossRefGoogle Scholar
- 133.Yamamoto, R., Matsuo, S., Tanaka, Y.: Thermal conductivity of halogenated ethanes HFC-134a, HFC-123 and HCFC-141b. Int. J. Thermophys. 14, 79–90 (1992)CrossRefGoogle Scholar
- 134.Yaws, C.L.: Calculate liquid heat capacity. Hydrocarb. Process. 73–77 (1991)Google Scholar
- 135.Yoor, P., Thodos, G.: Viscosity of nonpolar gaseous mixtures at normal pressures. AIChE J. 16, 300–304 (1970)CrossRefGoogle Scholar
- 136.Younglove, B.A., McLinden, M.O.: An international standard equation of state for the thermodynamic properties of refrigerant 123. J. Phys. Chem. Ref. Data 23, 731–779 (1994)CrossRefGoogle Scholar
- 137.Yuan, T.F., Stiel, L.I.: Heat capacity of saturated nonpolar and polar liquids. Ind. Eng. Chem. Fundam. 9, 393–400 (1970)CrossRefGoogle Scholar
Copyright information
© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019