Advertisement

D1 Berechnungsmethoden für thermophysikalische Stoffeigenschaften

  • Michael KleiberEmail author
  • Ralph Joh
Chapter
Part of the Springer Reference Technik book series (SRT)

Zusammenfassung

Dies ist ein Kapitel der 12. Auflage des VDI-Wärmeatlas.

Literatur

Monografien

  1. 1.
    Bronstein, I.N., Semendjajew, K.A.: Taschenbuch der Mathematik. Verlag Harri Deutsch, Thun/Frankfurt a. M. (2000)zbMATHGoogle Scholar
  2. 2.
    Gmehling, J., Kolbe, B.: Thermodynamik. Georg Thieme Verlag, Stuttgart/New York (1988)Google Scholar
  3. 3.
    Jakob, A.: Thermodynamische Grundlagen der Kristallisation und ihre Anwendung in der Modellentwicklung. Dissertation, Universität Oldenburg (1995)Google Scholar
  4. 4.
    Löffler, H.J.: Thermodynamik. Springer, Berlin/Heidelberg/New York/Tokyo (1969)CrossRefGoogle Scholar
  5. 5.
    Moore, W.J., Hummel, D.O.: Physikalische Chemie. de Gruyter, Berlin/New York (1986)CrossRefGoogle Scholar
  6. 6.
    Poling, B.E., Prausnitz, J.M., O’Connell, J.P.: The Properties of Gases and Liquids. McGraw-Hill, New York (2001)Google Scholar
  7. 7.
    Reid, R.C., Prausnitz, J.M., Poling, B.E.: The Properties of Gases and Liquids. McGraw-Hill, New York (1987)Google Scholar
  8. 8.
    Gmehling, J., Kolbe, B., Kleiber, M., Rarey, J.: Chemical Thermodynamics for Process Simulation. Wiley-VCH, Weinheim (2012)Google Scholar
  9. 9.
    Nannoolal, Y.: Development and Critical Evaluation of Group Contribution Methods for the Estimation of of Critical Properties, Liquid Vapor Pressure and Liquid Viscosity of Organic Compounds. Thesis, University of Kwazulu-Natal (2006)Google Scholar
  10. 10.
    Wagner, W.: FLUIDCAL. Software for the Calculation of Thermodynamic and Transport Properties of Several Fluids. Ruhr-Universität, Bochum (2005)Google Scholar

Beitragswerke

  1. 11.
    Lucas K, Luckas M (2002) Berechnungsmethoden für Stoffeigenschaften. In: Verein Deutscher Ingenieure (Hrsg). VDI-Wärmeatlas, 9, Springer, Berlin/Heidelberg/New York 1–38Google Scholar

Zeitschriftenbeiträge

  1. 12.
    Ahlers, J., Gmehling, J.: Development of a universal group contribution equation of state. I. Prediction of liquid densities for pure compounds with a volume translated Peng-Robinson equation of state. Fluid Phase Equilibria 191, 177–188 (2001)CrossRefGoogle Scholar
  2. 13.
    Aly, F.A., Lee, L.L.: Self-consistent equations for calculating the ideal gas heat capacity, enthalpy, and entropy. Fluid Phase Equilibria 6, 169–179 (1981)CrossRefGoogle Scholar
  3. 14.
    Chung, T.H., Ajlan, M., Lee, L.L., Starling, K.E.: Generalized multiparameter correlation for nonpolar and polar fluid transport properties. Ind. Eng. Chem. Res. 27, 671–679 (1988)CrossRefGoogle Scholar
  4. 15.
    Constantinou, L., Gani, R.: New group contribution method for estimating properties of pure compounds. AIChE J. 40(10), 1697–1710 (1994)CrossRefGoogle Scholar
  5. 16.
    Constantinou, L., Gani, R., O’Connell, J.P.: Estimation of the acentric factor and the liquid molar volume at 298 K using a new group contribution method. Fluid Phase Equilibria 103, 11–22 (1995)CrossRefGoogle Scholar
  6. 17.
    Duncan, J.B., Toor, H.L.: An experimental study of three component gas diffusion. AIChE J. 8(1), 38–41 (1962)CrossRefGoogle Scholar
  7. 18.
    Hankinson, R.W., Thomson, G.H.: A new correlation for saturated densities of liquids and their mixtures. AIChE J. 25, 653–663 (1979)CrossRefGoogle Scholar
  8. 19.
    Hoffmann, W., Florin, F.: Zweckmäßige Darstellung von Dampfdruckkurven. Verfahrenstechnik. Z. VDI-Beiheft 2, 47–51 (1943)Google Scholar
  9. 20.
    Kleiber, M.: The trouble with cpliq. Ind. Eng. Chem. Res. 42, 2007–2014 (2003)CrossRefGoogle Scholar
  10. 21.
    Li, P., Ma, P.S., Yi, S.Z., Zhao, Z.G., Cong, L.Z.: A new Corresponding-States Group-Contribution method (CSGC) for estimating vapor pressures of pure compounds. Fluid Phase Equilibria 101, 101–119 (1994)CrossRefGoogle Scholar
  11. 22.
    Lucas, K.: Die Druckabhängigkeit der Viskosität von Flüssigkeiten – eine einfache Abschätzung. Chem.-Ing.-Tech. 53, 959–960 (1981)CrossRefGoogle Scholar
  12. 23.
    Nannoolal, Y., Rarey, J., Ramjugernath, D., Cordes, W.: Estimation of pure component properties, part I: estimation of the normal boiling point of non-electrolyte organic compounds via group contributions and group interactions. Fluid Phase Equilibria 226, 45–63 (2004)CrossRefGoogle Scholar
  13. 24.
    Riedel, L.: Die Berechnung unbekannter thermischer Daten mit Hilfe des erweiterten Korrespondenzprinzips. Kältetechnik 9(5), 127–134 (1957)Google Scholar
  14. 25.
    Sastri, S.R.S., Rao, K.K.: A new group contribution method for predicting viscosity of organic liquids. Chem. Eng. J. 50, 9–25 (1992)CrossRefGoogle Scholar
  15. 26.
    Sastri, S.R.S., Rao, K.K.: A new method for predicting saturated liquid viscosity at temperatures above the normal boiling point. Fluid Phase Equilibria 175, 311–323 (2000)CrossRefGoogle Scholar
  16. 27.
    Span, R., Wagner, W.: Equations of state for technical applications. Int. J. Thermophys. 24(1), 1–162 (2003)CrossRefGoogle Scholar
  17. 28.
    Stiel, L.I., Thodos, G.: The thermal conductivity of nonpolar substances in the dense gaseous and liquid regions. AIChE J. 10, 26–30 (1964)CrossRefGoogle Scholar
  18. 29.
    Vetere, A.: Predicting the vapor pressures of pure compounds by using the Wagner equation. Fluid Phase Equilibria 62, 1–10 (1991)CrossRefGoogle Scholar
  19. 30.
    Wagner, W.: New vapour pressure measurements for argon and nitrogen and a new method of establishing rational vapour pressure equations. Cryogenics 13, 470–482 (1973)CrossRefGoogle Scholar
  20. 31.
    Wilke, C.R.: A viscosity equation for gas mixtures. J. Chem. Phys. 18, 517–519 (1950)CrossRefGoogle Scholar
  21. 32.
    Peng, D.Y., Robinson, D.B.: A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15(1), 59–64 (1976)CrossRefGoogle Scholar
  22. 33.
    Soave, G.: Equilibrium constants from a modified Redlich-Kwong equation of state. Chem. Eng. Sci. 27, 1197–1203 (1972)CrossRefGoogle Scholar
  23. 34.
    McGarry, J.: Correlation and prediction of the vapor pressures of pure liquids over large pressure ranges. Ind. Eng. Chem. Proc. Des. Dev. 22, 313–322 (1983)CrossRefGoogle Scholar
  24. 35.
    Nannoolal, Y., Rarey, J., Ramjugernath, D.: Estimation of pure component properties, part 3: estimation of the vapor pressure of non-electrolyte organic compounds via group contributions and group interactions. Fluid Phase Equilibria 269(1–2), 117–133 (2008)CrossRefGoogle Scholar
  25. 36.
    Jamieson, D.T.: Thermal conductivity of liquids. J. Chem. Eng. Data 24(3), 244–246 (1979)MathSciNetCrossRefGoogle Scholar
  26. 37.
    Fuller, E.N., Ensley, K., Giddings, J.C.: Diffusion of halogenated hydrocarbons in helium. The effect of structure on collision cross sections. J. Phys. Chem. 73(11), 3679–3685 (1969)CrossRefGoogle Scholar
  27. 38.
    Velzen D van, Lopes Cardozo R, Langenkamp H (1972) A liquid viscosity-temperature-chemical constitution relation for organic compounds. Ind. Eng. Chem. Fundam. 11,1: 20-25Google Scholar
  28. 39.
    Li, C.C.: Thermal conductivity of liquid mixtures. AIChE J. 22(5), 927–930 (1976)CrossRefGoogle Scholar
  29. 40.
    Tyn, M.T., Calus, W.F.: Diffusion coefficients in dilute binary liquid mixtures. J. Chem. Eng. Data 20(1), 106–109 (1975)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.thyssenkrupp Industrial Solutions AGBad SodenDeutschland
  2. 2.Power and GasSiemens AGFrankfurt am MainDeutschland

Section editors and affiliations

  • Karlheinz Schaber
    • 1
  1. 1.Institut für Technische Thermodynamik und Kältetechnik ITTKKarlsruher Institut für Technologie (KIT)KarlsruheDeutschland

Personalised recommendations