Advertisement

VDI-Wärmeatlas pp 1795-1810 | Cite as

M9 Konvektive Wärmeübertragung bei hohen Strömungsgeschwindigkeiten

  • Bernhard WeigandEmail author
  • Nimai-Kumar Mitra
Chapter
Part of the Springer Reference Technik book series (SRT)

Zusammenfassung

Dies ist ein Kapitel der 12. Auflage des VDI-Wärmeatlas.

Literatur

  1. 1.
    Gersten, K., Herwig, H.: Strömungsmechanik. Vieweg, Braunschweig (1992)CrossRefGoogle Scholar
  2. 2.
    Herwig, H.: Asymptotische Theorie zur Erfassung des Einflusses variabler Stoffwerte auf Impuls- und Wärmeübertragung. Fortschr.-Ber. VDI, R. 7, Nr. 93. VDI, Düsseldorf (1985)Google Scholar
  3. 3.
    Mitra, N.K.: Wärmeübertragung bei schallnahen Strömungen, VDI Wärmeatlas., Abschn. Mn. Springer, New York (2006)Google Scholar
  4. 4.
    Rotta, J.C.: Temperaturverteilungen in der turbulenten Grenzschicht an der ebenen Platte. Int. J. Heat Mass Transf. 7, 215–228 (1964)CrossRefGoogle Scholar
  5. 5.
    Kays, W., Crawford, M., Weigand, B.: Convective Heat and Mass Transfer. Mc Graw-Hill, New York (2004)Google Scholar
  6. 6.
    Schlichting, H.: Grenzschicht-Theorie. Verlag G. Braun, Karlsruhe (1982)zbMATHGoogle Scholar
  7. 7.
    Eckert, E.R.G., Drake Jr., R.M.: Analysis of Heat and Mass Transfer. Mc Graw-Hill, New York (1972)zbMATHGoogle Scholar
  8. 8.
    Cebeci, T., Bradshaw, P.: Physical and Computational Aspects of Convective Heat Transfer. Springer, New York (1984)CrossRefGoogle Scholar
  9. 9.
    Dorrance, W.H.: Viscous Hypersonic Flow. McGraw- Hill, New York (1962)zbMATHGoogle Scholar
  10. 10.
    Anderson Jr., J.D.: Hypersonic and High Temperature Gas Dynamics. McGraw- Hill, New York (1989)Google Scholar
  11. 11.
    Truitt, W.R.: Fundamentals of Aerodynamic Heating. The Ronald Press Company, New York (1960)Google Scholar
  12. 12.
    Hirschel, E.H.: Basics of Aerothermodynamics. Springer, New York (2005)Google Scholar
  13. 13.
    Walz, A.: Strömungs- und Temperaturgrenzschichten. Verlag G. Braun, Karlsruhe (1966)zbMATHGoogle Scholar
  14. 14.
    Koppenwallner, G.: Hypersonic Aerothermodynamics and Heat Transfer VKI Lecture Series 1984. VKI, Brussels (1984)Google Scholar
  15. 15.
    Jischa, M.: Konvektiver Impuls-, Wärme- und Stoffaustausch. Vieweg, Braunschweig (1982)CrossRefGoogle Scholar
  16. 16.
    Herwig, H.: An asymptotic approach to compressible boundary layer flow. Int. J. Heat Mass Transf. 30, 59–68 (1987)CrossRefGoogle Scholar
  17. 17.
    White, F.: Viscous Fluid Flow. Mc Graw-Hill, New York (1974)zbMATHGoogle Scholar
  18. 18.
    Weigand, B.: Analytical Methods for Heat Transfer and Fluid Flow Problems. Springer, New York (2015)zbMATHGoogle Scholar
  19. 19.
    Stewartson, K.: The Theory of Laminar Boundary Layers in Compressible Fluids Oxford Mathematical Monographs. Clarendon Press, Oxford (1964)CrossRefGoogle Scholar
  20. 20.
    Levy, S.: Effect of large temperature changes (including viscous heating) upon laminar boundary layers with variable free stream velocity. J. Aerosol Sci. 21(7), 459–474 (1954)zbMATHGoogle Scholar
  21. 21.
    Li, T.Y., Nagamatsu, H.T.: Similar solutions of compressible boundary layer equations. J. Aerosol Sci. 22(9), 607–616 (1955)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Cohen, C., Reshotko, E.: Similar solutions for the compressible laminar boundary layer with heat transfer and pressure gradient. NACA Report, 1293 (1956)Google Scholar
  23. 23.
    Fay, J.A., Riddel, F.R.: Theory of stagnation point heat transfer in dissociated air. J. Aero/Space Sci. 25(2), 73–85 (1958)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Beckwith, J.E., Gallagher, J.J.: Local heat transfer and recovery temperatures on a yawed cylinder at a mach number of 4.15 and high reynolds numbers. NASA TR-R- 104 (1962)Google Scholar
  25. 25.
    Shapiro, A.H.: The Dynamics and Thermodynamics of Compressible Flows, Bd. I. Ronald Press Company, New York (1954)Google Scholar
  26. 26.
    Sutton, G.P., Biblarz, O.: Rocket Propulsion Elements. Wiley, New York (2001)Google Scholar
  27. 27.
    Curran, E.T., Murthy, S.N.B.: Scramjet propulsion. Prog. Astronaut. Aeronaut. 189 (2000)Google Scholar
  28. 28.
    Shapiro, A.H.: The Dynamics and Thermodynamics of Compressible Flows, Bd. II. Ronald Press Company, New York (1954)Google Scholar
  29. 29.
    Miller, D.S.: Internal Flow Systems. Design and Performance Predictions. Gulf Publishing Company Book Division, London (1990)Google Scholar
  30. 30.
    Back, L.H.: Acceleration and cooling effects in laminar boundary layers- subsonic, transonic and supersonic speeds. AIAA J. 8(4), 794–802 (1970)CrossRefGoogle Scholar
  31. 31.
    Carden, W.H.: Local heat transfer coefficients in a nozzle with high- speed laminar flow. AIAA J. 3(12), 2183–2188 (1965)CrossRefGoogle Scholar
  32. 32.
    Bartz, D.R.: A simple equation for rapid estimation of rocket nozzle convective heat- transfer coefficients. Jet Propulsion 27, 49–51 (1957)CrossRefGoogle Scholar
  33. 33.
    Back, L.H., Massier, P.F., Gier, H.L.: Convective heat transfer in a convergent-divergent nozzle. Int. J. Heat Mass Transf. 7, 549–568 (1964)CrossRefGoogle Scholar
  34. 34.
    Mastanaiah, K.: Prediction of skin-friction and heat transfer from compressible turbulent boundary layers in rocket nozzles. Int. J. Heat Mass Transf. 21, 403–1409 (1978)CrossRefGoogle Scholar
  35. 35.
    Merzkirch, W., Page, R., Fletcher, L.S.: A survey of heat transfer in compressible separated and reattached flows. AIAA J. 26(2), 144–150 (1988)CrossRefGoogle Scholar
  36. 36.
    Holden, M.S.: Shock wave-turbulent boundary layer interaction in hypersonic flow, AIAA-77-45, 15th Aerospace Science Meeting, Los Angeles, 24–26 Jan (1977)Google Scholar
  37. 37.
    Holden, M.S.: A review of aerothermal problems associated with hypersonic flight. AIAA-86-0267, 24th Aerospace Science Meeting, Reno, 6–9 Jan (1986)Google Scholar
  38. 38.
    Schneider, S.P.: Effects of roughness on hypersonic boundary-layer transition. AIAA-2007-0305, Aerospace Sciences Meeting (2007)Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Thermodynamik der Luft- und RaumfahrtUniversität StuttgartStuttgartDeutschland
  2. 2.BochumDeutschland

Section editors and affiliations

  • Dieter Mewes
    • 1
  1. 1.Leibniz Universität HannoverHannoverDeutschland

Personalised recommendations