Advertisement

VDI-Wärmeatlas pp 1753-1772 | Cite as

M7 Wärmeleitung und Dispersion in durchströmten Schüttungen

  • Evangelos TsotsasEmail author
Chapter
Part of the Springer Reference Technik book series (SRT)

Zusammenfassung

Dies ist ein Kapitel der 12. Auflage des VDI-Wärmeatlas.

Literatur

  1. 1.
    Behnam, M., Dixon, A.G., Nijemeisland, M., Stitt, E.H.: A new approach to fixed bed radial heat transfer modeling using velocity fields from computational fluid dynamics simulations. Ind. Eng. Chem. Res. 52, 15244–15261 (2013)CrossRefGoogle Scholar
  2. 2.
    Alzahrani, F., Aldehani, M., Rusi, H., McMaster, M., Abreu Fernandes, D.L., Assabumrungrat, S., AntSaoir, M.N., Aiouache, F.: Gas flow visualization in low aspect ratio packed beds by three-dimensional modeling and near-infrared tomography. Ind. Eng. Chem. Res. 54, 12714–12729 (2015)CrossRefGoogle Scholar
  3. 3.
    Freund, H., Zeiser, T., Huber, F., Klemm, E., Brenner, G., Durst, F.: Numerical simulations of single phase reacting flows in randomly packed fixed-bed reactors and experimental validation. Chem. Eng. Sci. 58, 903–910 (2003)CrossRefGoogle Scholar
  4. 4.
    Tota A, Hlushkou D, Tsotsas E, Seidel-Morgenstern A (2006) Packed bed membrane reactors. In: Keil FH (ed) Modeling of Process Intensification. Wiley-VCH, Weinheim, S. 99–148Google Scholar
  5. 5.
    Verma, N., Mewes, D.: Simulation of temperature fields in a narrow tubular adsorber by thermal lattice Boltzmann methods. Chem. Eng. Sci. 63, 4269–4279 (2008)CrossRefGoogle Scholar
  6. 6.
    Bauer, R.: Effektive radiale Wärmeleitfähigkeit gasdurchströmter Schüttungen mit Partikeln unterschiedlicher Form und Größenverteilung. VDI-H. 582. VDI-Verl., Düsseldorf (1977)Google Scholar
  7. 7.
    Tsotsas, E.: Eine einfache empirische Gleichung zur Vorausberechnung der Porosität polydisperser Kugelschüttungen. Chem. Ing. Tech. 63, 495–496 (1991)CrossRefGoogle Scholar
  8. 8.
    Mueller, G.E.: Radial void fraction correlation for annular packed beds. AIChE J. 45, 2458–2460 (1999)CrossRefGoogle Scholar
  9. 9.
    Zobel, N., Eppinger, T., Behrend, F., Kraume, M.: Influence of the wall structure on the void fraction distribution in packed beds. Chem. Eng. Sci. 71, 212–219 (2012)CrossRefGoogle Scholar
  10. 10.
    Benenati, R.F., Brosilow, C.B.: Void fraction distribution in beds of spheres. AIChE J. 8, 359–361 (1962)CrossRefGoogle Scholar
  11. 11.
    Roblee, L.K.S., Baird, R.M., Tierny, J.W.: Radial porosity variations in packed beds. AIChE J. 4, 460–464 (1958)CrossRefGoogle Scholar
  12. 12.
    Bey, O., Eigenberger, G.: Fluid flow through catalyst filled tubes. Chem. Eng. Sci. 52, 1365–1376 (1997)CrossRefGoogle Scholar
  13. 13.
    Giese, M.: Strömung in porösen Medien unter Berücksichtigung effektiver Viskositäten. Dissertation, TU München (1998)Google Scholar
  14. 14.
    Kimura, M., Nono, K., Kaneda, T.: Distribution of void in a packed tube. Chem. Eng. Japan 14, 387–400 (1955)Google Scholar
  15. 15.
    Goodling, J.S., Vachon, R.I., Stelpflug, W.S., Ying, S.F.: Radial porosity distribution in cylindrical beds packed with spheres. Powder Technol. 35, 23–29 (1983)CrossRefGoogle Scholar
  16. 16.
    Tsotsas, E., Schlünder, E.-U.: Measurement of mass transfer between particles and gas in packed tubes at very low tube to particle diameter ratios. Wärme Stoffübertrag 25, 245–256 (1990)CrossRefGoogle Scholar
  17. 17.
    De Klerk, A.: Voidage variation in packed beds at small column to particle diameter ratio. AIChE J. 49, 2022–2029 (2003)CrossRefGoogle Scholar
  18. 18.
    Sonntag, G.: E;influss des Lückenvolumens auf den Druckverlust in gasdurchströmten Füllkörpersäulen. Chem. Ing. Tech. 32, 317–329 (1960)CrossRefGoogle Scholar
  19. 19.
    Tsotsas, E., Schlünder, E.-U.: On mass transfer, dispersion, and macroscopical flow maldistribution in packed tubes. Chem. Eng. Process 31, 181–190 (1992)Google Scholar
  20. 20.
    Giese, M., Rottschäfer, K., Vortmeyer, D.: Measured and modelled superficial flow profiles in packed beds with liquid flow. AIChE J. 44, 484–491 (1998)CrossRefGoogle Scholar
  21. 21.
    Nemec, D., Levec, J.: Flow through packed bed reactors, part 1: single-phase flow. Chem. Eng. Sci. 60, 6947–6957 (2005)CrossRefGoogle Scholar
  22. 22.
    Sodré, J.R., Parise, A.R.: Fluid flow pressure drop through an annular bed of spheres with wall effects. Exp. Therm. Fluid. Sci. 17, 265–275 (1998)CrossRefGoogle Scholar
  23. 23.
    Eisfeld, B., Schnitzlein, K.: A new pseudo-continuous model for the fluid flow in packed beds. Chem. Eng. Sci. 60, 4105–4117 (2005)CrossRefGoogle Scholar
  24. 24.
    Winterberg, M., Tsotsas, E.: Impact of tube-to-particle diameter ratio on pressure drop in packed beds. AIChE J. 46, 1084–1088 (2000)CrossRefGoogle Scholar
  25. 25.
    Tsotsas, E., Schlünder, E.-U.: On axial dispersion on packed beds with fluid flow. Chem. Eng. Process 24, 15–31 (1988)Google Scholar
  26. 26.
    Gladden, L.F.: Magnetic resonance: ongoing and future role in chemical engineering. AIChE J. 29, 2–9 (2003)CrossRefGoogle Scholar
  27. 27.
    Tang, D., Jess, A., Ren, X., Bluemich, B., Stapf, S.: Axial dispersion and wall effects in narrow fixed bed reactors: a comparative study based on RTD and NMR measurements. Chem. Eng. Technol. 27, 866–873 (2004)CrossRefGoogle Scholar
  28. 28.
    Martin, H.: Low Péclet-number particle-to-fluid heat and mass transfer in packed beds. Chem. Eng. Sci. 33, 913–919 (1978)CrossRefGoogle Scholar
  29. 29.
    Vortmeyer, D., Schuster, J.: Evaluation of steady flow profiles in rectangular and circular packed beds by a variational method. Chem. Eng. Sci. 38, 1691–1699 (1983)CrossRefGoogle Scholar
  30. 30.
    Park, J., Gibbs, S.J.: Mapping flow and dispersion in a packed column by MRI. AIChE J. 45, 655–660 (1999)CrossRefGoogle Scholar
  31. 31.
    Danckwerts, P.V.: Continuous flow systems – Distribution of residence times. Chem. Eng. Sci. 2, 1–13 (1953)CrossRefGoogle Scholar
  32. 32.
    Hein, S.: Modellierung wandgekühlter katalytischer Festbettreaktoren mit Ein- und Zweiphasenmodellen. Dissertation, TU München (1998)Google Scholar
  33. 33.
    Aris, R., Amundson, N.R.: Some remarks on longitudinal mixing or diffusion in fixed beds. AIChE J. 3, 280–282 (1957)CrossRefGoogle Scholar
  34. 34.
    Taylor, G.: Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. London, Ser. A. 219, 186–203 (1953)CrossRefGoogle Scholar
  35. 35.
    Johns, M.L., Sederman, A.J., Bramley, A.S., Gladden, L.F., Alexander, P.: Local transitions in flow phenomena through packed beds identified by MRI. AIChE J. 46, 2151–2161 (2000)CrossRefGoogle Scholar
  36. 36.
    Cavalho, J.R.F., Delgado, J.M.P.Q.: Effect of fluid properties on dispersion in flow through packed beds. AIChE J. 49, 1980–1985 (2003)CrossRefGoogle Scholar
  37. 37.
    Delgado, J.M.P.Q.: Longitudinal and transverse dispersion in porous media. Chem. Eng. Res. Des. 85, 1245–1252 (2007)CrossRefGoogle Scholar
  38. 38.
    Tsotsas, E.: Über die Wärme- und Stoffübertragung in durchströmten Festbetten: Experimente, Modelle, Theorien. Fortschr.-Ber. VDI, Reihe 3, Nr. 223. VDI-Verl., Düsseldorf (1990)Google Scholar
  39. 39.
    Vortmeyer, D.: Packed bed thermal dispersion models and consistent sets of coefficients. Chem. Eng. Process 26, 263–268 (1989)Google Scholar
  40. 40.
    Vortmeyer, D., Adam, W.: Steady-state measurement and analytical correlations of axial effective thermal conductivities in packed beds at low gas flow rates. Int. J. Heat Mass Transf. 27, 1465–1472 (1984)CrossRefGoogle Scholar
  41. 41.
    Winterberg, M., Tsotsas, E., Krischke, A., Vortmeyer, D.: A simple and coherent set of coefficients for modelling of heat and mass transport with and without chemical reaction in tubes filled with spheres. Chem. Eng. Sci. 55, 967–979 (2000)CrossRefGoogle Scholar
  42. 42.
    Zehner, P., Schlünder, E.-U.: Wämeleitfähigkeit von Schüttungen bei mäßigen Temperaturen. Chem. Ing. Tech. 42, 933–941 (1970)CrossRefGoogle Scholar
  43. 43.
    Baron, T.: Generalized graphical method for the design of fixed beds catalytic reactors. Chem. Eng. Prog. 48, 118–124 (1952)Google Scholar
  44. 44.
    Schlünder, E.-U.: Wärme- und Stoffübertragung zwischen durchströmten Schüttungen und darin eingebetteten Einzelkörpern. Chem. Ing. Tech. 38, 967–979 (1966)CrossRefGoogle Scholar
  45. 45.
    Cheng, P., Vortmeyer, D.: Transverse thermal dispersion and wall channelling in a packed bed with forced convective flow. Chem. Eng. Sci. 43, 2523–2532 (1988)CrossRefGoogle Scholar
  46. 46.
    Winterberg, M., Tsotsas, E.: Modelling of heat transport in beds packed with spherical particles for various bed geometries and/or thermal boundary conditions. Int. J. Therm. Sci. 39, 556–570 (2000)CrossRefGoogle Scholar
  47. 47.
    Winterberg, M., Tsotsas, E.: Correlations for effective transport coefficients in beds packed with cylindrical particles. Chem. Eng. Sci. 55, 5937–5943 (2000)CrossRefGoogle Scholar
  48. 48.
    Gunn, D.J., Ahmad, M.M., Sabri, M.N.: Radial heat transfer to fixed beds of particles. Chem. Eng. Sci. 42, 2163–2171 (1987)CrossRefGoogle Scholar
  49. 49.
    Dixon, A.G.: Wall and particle-shape effects on heat transfer in packed beds. Chem. Eng. Commun. 71, 217–237 (1988)CrossRefGoogle Scholar
  50. 50.
    Haidegger, E.: Der radiale Wärmetransport in wandgekühlten Festbettreaktoren mit exothermer chemischer Reaktion. Dissertation, TU München (1978)Google Scholar
  51. 51.
    Vortmeyer, D., Haidegger, E.: Discrimination of three approaches to evaluate heat fluxes for wall-cooled fixed bed chemical reactors. Chem. Eng. Sci. 46, 2651–2660 (1991)CrossRefGoogle Scholar
  52. 52.
    Daszkowski, T.: Stoff- und Wärmetransport in schüttungsgefüllten Rohrreaktoren. Dissertation, Universität Stuttgart (1991)Google Scholar
  53. 53.
    Daszkowski, T., Eigenberger, G.: Zum Einfluss einer genaueren Strömungsmodellierung auf die Beschreibung von Festbettreaktoren. Chem. Eng. Sci. 62, 852–855 (1990)Google Scholar
  54. 54.
    Winterberg, M., Krischke, A., Tsotsas, E., Vortmeyer, D.: on the invariability of transport parameters in packed beds upon catalytic reaction. Récents progrès en génie des procèdès 13, 205–212 (1999)Google Scholar
  55. 55.
    Nilles, M.: Wärmeübertragung an der Wand durchströmter Schüttungsrohre. Fortschr.-Ber. VDI, Reihe 3, Nr. 264. VDI-Verl., Düsseldorf (1991)Google Scholar
  56. 56.
    Martin, H., Nilles, M.: Radiale Wärmeleitung in durchströmten Schüttungsrohren – Eine vergleichende Auswertung neuer experimenteller Befunde. Chem. Ing. Tech. 65, 1468–1477 (1993)CrossRefGoogle Scholar
  57. 57.
    Tsotsas, E., Schlünder, E.-U.: Heat transfer in packed beds with fluid flow. Chem. Eng. Sci. 45, 819–837 (1990)CrossRefGoogle Scholar
  58. 58.
    Schlünder, E.-U., Tsotsas, E.: Wärmeübertragung in Festbetten, durchmischten Schüttgütern und Wirbelschichten. Thieme-Verl, Stuttgart (1998)Google Scholar
  59. 59.
    Ströhle, S., Haselbacher, A., Jovanovic, Z.R., Steinfeld, A.: Transient discrete-granule packed-bed reactor model for thermochemical energy storage. Chem. Eng. Sci. 117, 465–478 (2014)CrossRefGoogle Scholar
  60. 60.
    Dong, Y., Keil, F.J., Korup, O., Rosowksi, F., Horn, R.: Effect of the catalyst pore structure on fixed-bed reactor performance of partial oxidation of n-butane: a simulation study. Chem. Eng. Sci. 142, 299–309 (2016)CrossRefGoogle Scholar
  61. 61.
    Dixon, A.G., Cresswell, D.L.: Theoretical prediction of effective heat transfer parameters in packed beds. AIChE J. 25, 663–676 (1979)CrossRefGoogle Scholar
  62. 62.
    Dommeti, S.M.S., Balakotaiah, V., West, D.H.: Analytical criteria for validity of pseudohomogeneous models of packed bed catalytic reactors. Ind. Eng. Chem. Res. 38, 767–777 (1999)CrossRefGoogle Scholar
  63. 63.
    Kwapinski, W., Winterberg, M., Tsotsas, E., Mewes, D.: Modelling of the wall effect in packed bed adsorption. Chem. Eng. Technol. 27, 1179–1186 (2004)CrossRefGoogle Scholar
  64. 64.
    Kwapinski, W., Salem, K., Mewes, D., Tsotsas, E.: Thermal and flow effects during adsorption in conventional, diluted and annular packed beds. Chem. Eng. Sci. 68, 4250–4260 (2010)CrossRefGoogle Scholar
  65. 65.
    Mette, B., Kerskes, H., Drück, H., Müller-Steinhagen, H.: Experimental and numerical investigations on the water vapor adsorption isotherms and kinetics of binderless zeolite 13X. Int. J. Heat Mass Transf. 71, 555–561 (2014)CrossRefGoogle Scholar
  66. 66.
    Brandstädter, W.M., Kraushaar-Czarnetzki, B.: Maleic anhydride from mixtures of n-butenes and n-butane: simulation of a production-scale non-isothermal fixed-bed reactor. Ind. Eng. Chem. Res. 46, 1475–1484 (2007)CrossRefGoogle Scholar
  67. 67.
    Schlereth, D., Hinrichsen, O.: A fixed-bed reactor modeling study on the methanation of CO2. Chem. Eng. Res. Des. 92, 702–712 (2014)CrossRefGoogle Scholar
  68. 68.
    Hamel, C., Tota, A., Klose, F., Tsotsas, E., Seidel-Morgenstern, A.: Packed-bed membrane reactors. In: Seidel-Mergenstern, A. (Hrsg.) Membrane Reactors, S. 133–165. Wiley-VCH, Weinheim (2010)CrossRefGoogle Scholar
  69. 69.
    Gräf, I., Ladenburger, G., Kraushaar-Czarnetzki, B.: Heat transport in catalytic sponge packings in the presence of an exothermal reaction: characterization by 2D modeling of experiments. Chem. Eng. J. 287, 425–435 (2016)CrossRefGoogle Scholar
  70. 70.
    Carslaw, H.-S., Jaeger, J.C.: Conduction of Heat in Solids, 2. Aufl.. Oxford University Press, Oxford, UK (1959)zbMATHGoogle Scholar
  71. 71.
    Bronstein, I.N., Semendjajew, K.A.: Taschenbuch der Mathematik, 23. Aufl.. Verlag Harri Deutsch, Thun (1987)zbMATHGoogle Scholar
  72. 72.
    Press, W.H., Teukolsky, S.A., et al.: Nummerical Recipes in FORTRAN, 2. Aufl. Cambridge University Press, Cambridge, UK. (1992)Google Scholar
  73. 73.
    NAG Fortran Library: Mark 16: Routine D02RAF. Oxford (1993)Google Scholar
  74. 74.
    Melgaard, D.K., Sincovec, R.F.: General software for two-dimensional non-linear partial differential equations. ACM Trans. Math. Softw. 7, 106–125 (1981)Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Lehrstuhl für Thermische VerfahrenstechnikOtto-von-Guericke-UniversitätMagdeburgDeutschland

Section editors and affiliations

  • Dieter Mewes
    • 1
  1. 1.Institut für VerfahrenstechnikLeibniz Universität HannoverHannoverDeutschland

Personalised recommendations