Advertisement

Supportive Methoden zur Knochenheilung

  • Ralf Skripitz
  • Andreas Roth
  • Klaus M. Peters
  • Gerald Zimmermann
  • Hans Goost
  • Thomas Randau
  • Marcus Jäger
  • Ulrich Nöth
  • Marcel Haversath
Part of the Fortbildung Osteologie book series (FORTOSTEO, volume 4)

Zusammenfassung

Die supportiven Maßnahmen zur Knochenheilung umfassen medikamentöse Werkzeuge der Knochenchirurgie, Strontiumranelat und Parathormon als medikamentöse Therapie der Pseudarthrose, Bone Morphogenetic Proteins (BMP) in der Knochenbruchheilung, Ultraschalltherapie bei Pseudarthrose sowie die Zelltherapie zur Unterstützung der Knochenheilung.

Literatur

Literatur zu Abschn. 2.1

  1. Albrektsson T, Johansson C (2001) Osteoinduction, osteoconduction and osseointegration. Eur Spine J 10 Suppl 2: S96–101Google Scholar
  2. Aspenberg P, Genant H K, Johansson T, Nino A J et al. (2010) Teriparatide for acceleration of fracture repair in humans: a prospective, randomized, double-blind study of 102 postmenopausal women with distal radial fractures. J Bone Miner Res 25 (2): 404–414CrossRefGoogle Scholar
  3. Astrand J, Skripitz R, Aspenberg P (2000) Alendronate reduces osteolysis induced by fluid pressure in a rat model. Trans Orthop Res Soc 25: 524–524Google Scholar
  4. Duarte PM, de Vasconcelos Gurgel BC, Sallum AW, Filho GR, Sallum EA, Nociti FH Jr (2005) Alendronate therapy may be effective in the prevention of bone loss around titanium implants inserted in estrogen-deficient rats. J Periodontol 76: 107–14PubMedCrossRefPubMedCentralGoogle Scholar
  5. Eberhardt C, Habermann B, Kurth AA (2007) Anwendungsmöglichkeiten der Bisphosphonate in der Endoprothetik. Orthopäde 36: 141–145PubMedCrossRefPubMedCentralGoogle Scholar
  6. Eberhardt C, Stumpf U, Brankamp J, Schwarz M, Kurth AH (2006) Osseointegration of cementless implants with different bisphosphonate regimens. Clin Orthop Relat Res 447: 195–200PubMedCrossRefPubMedCentralGoogle Scholar
  7. Goodship AE, Lawes TJ, Green J, Eldridge JD, Kenwright J (1998) The use of bisphosphonates to inhibit mechanically related bone loss in aseptic loosening of hip prostheses. Trans Orthop Res Soc 23: 2Google Scholar
  8. Gradinger R, Gollwitzer H (Hrsg) (2006) Ossäre Integration. Springer, Berlin Heidelberg New YorkGoogle Scholar
  9. Hennigs T, Arabmotlagh M, Schwarz A, Zichner L (2002) Dosisabhängige Prophylaxe des frühen periprothetischen Knochenschwundes durch Alendronat. Z Orthop Ihre Grenzgeb 140: 42–47PubMedCrossRefPubMedCentralGoogle Scholar
  10. Hilding M, Ryd L, Toksvig-Larsen S, Aspenberg P (2000) Clodronate prevents prosthetic migration: a randomized radiostereometric study of 50 total knee patients. Acta Orthop Scand 71: 553–557PubMedCrossRefPubMedCentralGoogle Scholar
  11. Koeppen V, Skripitz R (2015) Unerwünschte Spätfolgen einer Bisphosphonattherapie. Arthritis Rheuma 35: 217–222CrossRefGoogle Scholar
  12. Milett PJ, Allen AJ, Doty S, Bostrom M (2002) Effects of alendronate on particulate-induced osteolysis in a rat model. J Bone Joint Surg Am 84-A: 236– 249Google Scholar
  13. Pilliar RM, Lee JM, Maniatopoulos C (1986) Observations on the effect of movement on bone ingrowth into porous-surfaced implants. Clin Orthop Relat Res 208: 108–113Google Scholar
  14. Shanbhag AS, Hasselman CT, Rubash HE (1997) The John Charnley Award. Inhibition of wear debris mediated osteolysis in a canine total hip arthroplasty model. Clin Orthop Relat Res 344: 33–43CrossRefGoogle Scholar
  15. Shanbhag AS, May D, Cha C, Kovach C, Hasselman CT, Rubash HE (1999) Enhancing net bone formation in canine total hip components with bisphosphonates. Trans Orthop Res Soc 24: 255Google Scholar
  16. Skripitz R, Andreassen TT, Aspenberg P (2000) Parathyroid hormone (1–34) increases the density of rat cancellous bone in a bone chamber. A dose-response study. J Bone Joint Surg Br 82: 138– 141Google Scholar
  17. Skripitz R, Andreassen TT, Aspenberg P (2000) Strong effect of PTH (1–34) on regenerating bone: a time sequence study in rats. Acta Orthop Scand 71: 619–624PubMedCrossRefPubMedCentralGoogle Scholar
  18. Skripitz R, Aspenberg P (2001) Early effect of parathyroid hormone (1–34) on implant fixation. Clin Orthop Relat Res 392: 427–432CrossRefGoogle Scholar
  19. Thorey F, Menzel H, Lorenz C, Gross G, Hoffmann A, Windhagen H (2010) Enhancement of endoprosthesis anchoring using BMP-2. Technol Health Care 18: 217–29Google Scholar

Literatur zu Abschn. 2.2

  1. Alegre DN, Ribeiro C, Sousa C, Correia J, Silva L, de Almeida L (2012) Possible benefits of strontium ranelate in complicated long bone fractures. Rheumatol Int 32: 439–443PubMedCrossRefPubMedCentralGoogle Scholar
  2. Aspenberg P, Genant HK, Johansson T et al. (2010) Teriparatide for acceleration of fracture repair in humans: a prospective, randomized, double-bling study of 102 postmenopausal women with distal radius fractures. J Bone Miner Res 25: 404–414CrossRefGoogle Scholar
  3. Bishop JA, Palanca AA, Bellino MJ), Lowenberg DW (2012) Assessment of compromised fracture healing. J Am Acad Orthop Surg 20: 273–282PubMedCrossRefPubMedCentralGoogle Scholar
  4. Bukata SV, Puzas JE (2010) Orthopedic uses of teriparatide. Curr Osteoporos Res 8: 28–33PubMedCrossRefPubMedCentralGoogle Scholar
  5. Calori GM, Tagliablue L, Gala L et al (2008) Application of rhBMP-7 and platelet-rich plasma in the treatment of long bone non-unions: a prospective randomized clinical study on 120 patients. Injury 39: 1391–1402PubMedCrossRefPubMedCentralGoogle Scholar
  6. Cebesoy O, Tutar E, Kose KC, Baltaci Y, Bagci C (2007) Effect of strontium ranelate on fracture healing in rat tibia. Joint Bone Spine 74: 590–593PubMedCrossRefPubMedCentralGoogle Scholar
  7. Chintamaneni S, Finzel K, Gruber BL (2010) Successful treatment of sternal fracture nonunion with teriparatide. Osteoporos Int 21: 1059–1063PubMedCrossRefPubMedCentralGoogle Scholar
  8. De Long WG, Einhorn TA, Koval K et al. (2007) Bone grafts and bone graft sustitutes in orthopaedic trauma surgery. A critical analysis. J Bone Joint Surg AM 89: 649–658Google Scholar
  9. Einhorn TA (1998) Breakout session 1: definitions of fracture repair. Clin Orthop Relat Res [Suppl] 355: S353CrossRefGoogle Scholar
  10. Ellegard M, Jorgensen NR, Schwarz P (2010) Parathyroid hormone and none healing, Calcif Tissue Int 87: 1–13PubMedCrossRefPubMedCentralGoogle Scholar
  11. Giannotti S, Bottai V, Dell’Osso G, de Paola G, Pini E, Guido G (2013) Atrophic femoral non-union successful treates with teriparatide. Eur J Orthop Surg Traumatol [Suppl 2] 23: 291–294Google Scholar
  12. Habermann B, Kafchitsas K, Olender G, Augat P, Kurth A (2010) Strontium ranelate enhances callus strength more than PTH 1–34 in an osteoprotic rat model of fracture healing Calcif Tissue Int 86: 82–89PubMedCrossRefPubMedCentralGoogle Scholar
  13. Lee YK, Ha YC, Koo KH (2012) Teriparatide, a nonsurgical solution for femoral nonunion? A report of three cases. Osteoporos Int 23: 2897–2900PubMedCrossRefPubMedCentralGoogle Scholar
  14. Li YF, Luo E, Feng G, Zhu SS, Li JH, Hu J (2010) Systemic treatment with strontium ranelate promotes tibial fracture healing in ovariectomized rats. Osteoporos Int 21: 1889–1897PubMedCrossRefPubMedCentralGoogle Scholar
  15. Mancilla EE, Brodsky IL, Mehta S, Pignolo R, Levine MA (2014) Teriparatide as a systemic treatment for lower extremity non-union fractures: a case series. Endocr Pract 1–22Google Scholar
  16. Moghaddam-Alvandi A, Zimmermann G, Büchler A et al (2012) Ergebnisse der Pseudarthrosenbehandlung mit „bone morphogenetic protein 7“ (BMP-7). Unfallchirurg 115: 518–526PubMedCrossRefPubMedCentralGoogle Scholar
  17. Niedhart, C (2014) Osteoanabole Behandlung von Pseudarthrosen. DVO-Spezialkurs 1.2.2014, KölnGoogle Scholar
  18. Obermayer-Pietsch B, Marin F, McCloskey EV (2008) Effects of two years of daily teriparatide treatment on BMD in postmenopausal women with severe osteoporosis with and without prior antiresorptive treatment JBMR 23: 1591–1600Google Scholar
  19. Oteo-Alvaro A, Morena E (2010) Atrophic humeral shaft nonunion treated with teriparatide (rh PTH 1–34): a case report. J Shoulder Elbow Surg 19: e22–28PubMedCrossRefPubMedCentralGoogle Scholar
  20. Peichl P, Holzer LA, Maier R, Holzer G (2011) Parathyroid hormone 1–84 activates fracture healing in pubic bones of elderly osteoporotie woman. J Bone Joint Serg AM 93: 1583–1587Google Scholar
  21. Peters KM, Bungart D (2012) Teriparatide administration for the drug treatment of pseudarthrosis: Presentation of three cases. Osteologie 21: 29–32CrossRefGoogle Scholar
  22. Peters KM, Tuncel T (2015) Anwendung von Osteologica bei gestörter Frakturheilung. Orthopäde 44: 710–715PubMedCrossRefPubMedCentralGoogle Scholar
  23. Steinhausen E, Glombitza M, Böhm HJ, Hax PM, Rixen D (2013) Pseudarthrosen. Von der Diagnose bis zur Ausheilung. Unfallchirurg 116: 633–647PubMedCrossRefPubMedCentralGoogle Scholar
  24. Tamai K, Takamatsu K, Kazuki K (2013) Successful treatment of nonunion with teriparatide after failed ankle arthrodesis for Charcot arthropathy. Osteoporos Int 24: 2729–2732PubMedCrossRefPubMedCentralGoogle Scholar

Literatur zu Abschn. 2.3

  1. Dai J, Li L, Jiang C, Wang C, Chen H, Chai Y (2015) Bone Morphogenetic Protein for the Healing of Tibial Fracture: A Meta-Analysis of Randomized Controlled Trials. PLoS One 10: e0141670PubMedCrossRefPubMedCentralGoogle Scholar
  2. Garrison KR, Donell S, Ryder J, Shemilt 1, Mugford M, Harvey 1, Song F (2007) Clinical effectiveness and cost-effectiveness of bone morphogenetic proteins in the non-healing of fractures and spinal fusion: a systematic review. Health Techno Assess 11: 1: 150, iii-ivGoogle Scholar
  3. Garrison KR, Shemilt I, Donell S, Ryder JJ, Mugford M, Harvey L, Song F, Alt V (2010) Bone morphogenetic protein (BMP) for fracture healing in adults. Cochrane Database Syst Rev 6: CD006950Google Scholar
  4. Gerstenfeld LC, Cullinane DM, Barnes GL, Graves DT, Einhorn TA (2003) Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. Journal of cellular biochemistry 88: 873–884PubMedCrossRefPubMedCentralGoogle Scholar
  5. Hankenson KD, Zimmermann G, Marcucio R (2014) Biological perspectives of delayed fracturehealing. Injury 45 Suppl 2: S8-S15PubMedCrossRefPubMedCentralGoogle Scholar
  6. Hausmann M, Ehnert S, Hofmann V, Döbele S, Freude T, Stöckle U, Nussler A (2014) Use of Sone Morphogenetic Proteins (SMPs) for the Treatment of Pseudarthroses - Efficiency and Therapy Failure]. Z Orthop Unfallchir 152: 144–51PubMedCrossRefPubMedCentralGoogle Scholar
  7. Henle P, Zimmermann G, Weiss S (2005) Matrix metalloproteinases and failed fracture healing. Bone 37: 791–8PubMedCrossRefPubMedCentralGoogle Scholar
  8. Lieberman JR, Daluiski A, Einhorn TA (2002) The rote of growth factors in the repair of hone. Biology and clinical applications. J Hone Joint Surg Am Vol 84-a: 1032–44Google Scholar
  9. Marsell R, Einhorn TA. The biology of fracture healing. Injury (2011) 42: 551–5PubMedCrossRefPubMedCentralGoogle Scholar
  10. Moghaddam A, Breier L, Haubruck P, Sender D, Biglari B, Wentzensen A, Zimmermann G (2016) Non-unions treated with bone morphogenic protein 7: introducing the quantitative measurement of human serum cytokine levels as promising tool in evaluation of adjunct non-union therapy. J lnflamm (Land). 13: 3Google Scholar
  11. Schmidmaier G, Wildemann B, Heeger J, Gäbelein T, Flyvbjerg A, Bail HJ, Raschke M (2002) lmprovement of fracture healing by systemic administration of growth hormone and local application of insulin-like growth factor-1 and transforming growth factor-beta1. Bone 31: 165–172PubMedCrossRefPubMedCentralGoogle Scholar
  12. Urist MR (1965) Sone: formation by autoinduction. Science. 1965; 150: 893–899PubMedCrossRefPubMedCentralGoogle Scholar
  13. Weiss S, Zimmermann G, Baumgart R, Kasten P, Bidlingmaier M, Henle P (2005) Systemic regulation of angiogenesis and matrix degradation in bone regeneration distraction osteogenesis compared to rigid fracture healing. Bone 37: 781–790PubMedCrossRefPubMedCentralGoogle Scholar
  14. Ye L, Jiang WG (2015) Bone morphogenetic proteins in tumour associated angiogenesis and implication in cancer therapies. Cancer Lett 2015. pii: 80304–3835(15)00704–1Google Scholar
  15. Zimmermann G, Henle P, Küsswetter M, Moghaddam A, Wentzensen A, Richter W, Weiss S (2005) TGF-beta1 as a marker of delayed fracture healing. Bone 36: 779–785PubMedCrossRefPubMedCentralGoogle Scholar

Literatur zu Abschn. 2.4

  1. Agerup B, Berg P, Åkermark C (2005) Non-animal stabilized hyaluronic acid: a new formulation for the treatment of osteoarthritis. BioDrugs 19: 23–30CrossRefGoogle Scholar
  2. Castillo RC, Bosse MJ, MacKenzie EJ, Patterson BM (2005) Impact of smoking on fracture healing and risk of complications in limb-threatening open tibia fractures. J Orthop Trauma 19: 151–157PubMedCrossRefPubMedCentralGoogle Scholar
  3. Chiu CY, Tsai TL, Vanderby R, Jr., Bradica G, Lou SL, Li WJ (2015) Osteoblastogenesis of Mesenchymal Stem Cells in 3-D Culture Enhanced by Low-Intensity Pulsed Ultrasound through Soluble Receptor Activator of Nuclear Factor Kappa B Ligand. Ultrasound Med Biol 41: 1842–1852CrossRefGoogle Scholar
  4. Cook SD, Ryaby JP, McCabe J, Frey JJ, Heckman JD, Kristiansen TK (1997) Acceleration of tibia and distal radius fracture healing in patients who smoke. Clin Orthop Relat Res: 198–207CrossRefGoogle Scholar
  5. Duarte LR (1983) The stimulation of bone growth by ultrasound. Arch Orthop Trauma Surg 101: 153–159CrossRefGoogle Scholar
  6. Edsman K, Melin H, Näsström J (2009) A study of the ability of Durolane to withstand degradation by free radicals while maintaining its viscoelastic properties. Poster presented at: 55th Annual Meeting of the Orthopaedic Research Society; February 2009; Las Vegas, NVGoogle Scholar
  7. Freeman TA, Patel P, Parvizi J, Antoci V Jr, Shapiro IM (2009) Micro-CT analysis with multiple thresholds allows detection of bone formation and resorption during ultrasound-treated fracture healing. J Orthop Res 27: 673–679PubMedCrossRefPubMedCentralGoogle Scholar
  8. Gebauer D, Mayr E, Orthner E, Ryaby JP (2005) Low-intensity pulsed ultrasound: effects on nonunions. Ultrasound Med Biol 31: 1391–1402CrossRefGoogle Scholar
  9. Gebauer GP, Lin SS, Beam HA, Vieira P, Parsons JR (2002) Low-intensity pulsed ultrasound increases the fracture callus strength in diabetic BB Wistar rats but does not affect cellular proliferation. J Orthop Res 20: 587–592PubMedCrossRefPubMedCentralGoogle Scholar
  10. Griffin XL, Smith N, Parsons N, Costa ML (2012) Ultrasound and shockwave therapy for acute fractures in adults. Cochrane Database Syst Rev 2: CD008579Google Scholar
  11. Heckman JD, Ryaby JP, McCabe J, Frey JJ, Kilcoyne RF (1994) Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound. J Bone Joint Surg Am 76: 26–34CrossRefGoogle Scholar
  12. Kaminski A, Muhr G (2008) Pseudarthrosen. Orthopädie und Unfallchirurgie up2date 3: 41–56CrossRefGoogle Scholar
  13. Leung KS, Lee WS, Tsui HF, Liu PP, Cheung WH (2004) Complex tibial fracture outcomes following treatment with low-intensity pulsed ultrasound. Ultrasound Med Biol 30: 389–395CrossRefGoogle Scholar
  14. Lindqvist U, Tolmachev V, Kairemo K, et al. (2002) Elimination of stabilised hyaluronan from the knee joint in healthy men. Clin Pharmacokinet 41: 603–613PubMedCrossRefPubMedCentralGoogle Scholar
  15. Mayr E, Frankel V, Ruter A (2000) Ultrasound--an alternative healing method for nonunions? Arch Orthop Trauma Surg 120: 1–8PubMedCrossRefPubMedCentralGoogle Scholar
  16. Naruse K, Sekiya H, Harada Y, Iwabuchi S, Kozai Y, Kawamata R, Kashima I, Uchida K, Urabe K, Seto K, Itoman M, Mikuni-Takagaki Y (2010) Prolonged endochondral bone healing in senescence is shortened by low-intensity pulsed ultrasound in a manner dependent on COX-2. Ultrasound Med Biol 36: 1098–1108CrossRefGoogle Scholar
  17. Nolte PA, Klein-Nulend J, Albers GH, Marti RK, Semeins CM, Goei SW, Burger EH (2001) Low-intensity ultrasound stimulates endochondral ossification in vitro. J Orthop Res 19: 301–307PubMedCrossRefPubMedCentralGoogle Scholar
  18. Pilla AA, Mont MA, Nasser PR, Khan SA, Figueiredo M, Kaufman JJ, Siffert RS (1990) Non-invasive low-intensity pulsed ultrasound accelerates bone healing in the rabbit. J Orthop Trauma 4: 246–253PubMedCrossRefPubMedCentralGoogle Scholar
  19. Rutten S, Nolte PA, Guit GL, Bouman DE, Albers GH (2007) Use of low-intensity pulsed ultrasound for posttraumatic nonunions of the tibia: a review of patients treated in the Netherlands. J Trauma 62: 902–908CrossRefGoogle Scholar
  20. Schofer MD, Block JE, Aigner J, Schmelz A (2010) Improved healing response in delayed unions of the tibia with low-intensity pulsed ultrasound: results of a randomized sham- controlled trial. BMC Musculoskelet Disord 11: 229Google Scholar
  21. Yan H, Liu X, Zhu M, Luo G, Sun T, Peng Q, Zeng Y, Chen T, Wang Y, Liu K, Feng B, Weng J, Wang J (2015) Hybrid use of combined and sequential delivery of growth factors and ultrasound stimulation in porous multilayer composite scaffolds to promote both vascularization and bone formation in bone tissue engineering. J Biomed Mater Res A 104: 195–208PubMedCrossRefPubMedCentralGoogle Scholar
  22. Zura R, Mehta S, Della Rocca GJ, Jones J, Steen RG (2015) A cohort study of 4,190 patients treated with low-intensity pulsed ultrasound (LIPUS): findings in the elderly versus all patients. BMC Musculoskelet Disorders 16: 45Google Scholar

Literatur zu Abschn. 2.5

  1. Abumaree M, Al Jumah M, Pace RA, Kalionis B (2012) Immunosuppressive properties of mesenchymal stem cells. Stem Cell Rev 8: 375–392CrossRefGoogle Scholar
  2. Alexander RW, Harrell DB (2013) Autologous fat grafting: use of closed syringe microcannula system for enhanced autologous structural grafting. Clin Cosmet Investig Dermatol 6: 91–102Google Scholar
  3. Ardjomandi N, Duttenhoefer F, Xavier S, Oshima T, Kuenz A, Sauerbier S (2015) In vivo comparison of hard tissue regeneration with ovine mesenchymal stem cells processed with either the FICOLL method or the BMAC method. J Craniomaxillofac Surg 43: 1177–1183PubMedCrossRefPubMedCentralGoogle Scholar
  4. Assal M, Stern R (2014) The Masquelet procedure gone awry. Orthopedics 37: e1045–1048PubMedCrossRefPubMedCentralGoogle Scholar
  5. Becerikli M, Jaurich H, Schira J, Schulte M, Dobele C, Wallner C, Abraham S, Wagner JM, Dadras M, Kneser U, Lehnhardt M, Behr B (2017) Age-dependent alterations in osteoblast and osteoclast activity in human cancellous bone. J Cell Mol Med 21: 2773–2781PubMedCrossRefPubMedCentralGoogle Scholar
  6. Berendsen AD, Olsen BR (2014) How vascular endothelial growth factor-A (VEGF) regulates differentiation of mesenchymal stem cells. J Histochem Cytochem 62: 103–108CrossRefGoogle Scholar
  7. Berendsen AD, Olsen BR (2015) Regulation of adipogenesis and osteogenesis in mesenchymal stem cells by vascular endothelial growth factor A. J Intern Med 277: 674–680PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bosemark P, Perdikouri C, Pelkonen M, Isaksson H, Tagil M (2015) The masquelet induced membrane technique with BMP and a synthetic scaffold can heal a rat femoral critical size defect. J Orthop Res 33: 488–495PubMedCrossRefPubMedCentralGoogle Scholar
  9. Camilleri ET, Gustafson MP, Dudakovic A, Riester SM, Garces CG, Paradise CR, Takai H, Karperien M, Cool S, Sampen HJ, Larson AN, Qu W, Smith J, Dietz AB, van Wijnen AJ (2016) Identification and validation of multiple cell surface markers of clinical-grade adipose-derived mesenchymal stromal cells as novel release criteria for good manufacturing practice-compliant production. Stem Cell Res Ther 7: 107Google Scholar
  10. Casiraghi F, Perico N, Remuzzi G (2013) Mesenchymal stromal cells to promote solid organ transplantation tolerance. Curr Opin Organ Transplant 18: 51–58PubMedCrossRefPubMedCentralGoogle Scholar
  11. Chahla J, Cinque ME, Shon JM, Liechti DJ, Matheny LM, LaPrade RF, Clanton TO (2016a) Bone marrow aspirate concentrate for the treatment of osteochondral lesions of the talus: a systematic review of outcomes. J Exp Orthop 3: 33Google Scholar
  12. Chahla J, Dean CS, Moatshe G, Pascual-Garrido C, Serra Cruz R, LaPrade RF (2016b) Concentrated Bone Marrow Aspirate for the Treatment of Chondral Injuries and Osteoarthritis of the Knee: A Systematic Review of Outcomes. Orthop J Sports Med 4: 2325967115625481CrossRefGoogle Scholar
  13. Chahla J, Mannava S, Cinque ME, Geeslin AG, Codina D, LaPrade RF (2017) Bone Marrow Aspirate Concentrate Harvesting and Processing Technique. Arthrosc Tech 6: e441-e445PubMedCrossRefPubMedCentralGoogle Scholar
  14. Chen YJ, Kuo YR, Yang KD, Wang CJ, Sheen Chen SM, Huang HC, Yang YJ, Yi-Chih S, Wang FS (2004a) Activation of extracellular signal-regulated kinase (ERK) and p38 kinase in shock wave-promoted bone formation of segmental defect in rats. Bone 34: 466–477PubMedCrossRefPubMedCentralGoogle Scholar
  15. Chen YJ, Wurtz T, Wang CJ, Kuo YR, Yang KD, Huang HC, Wang FS (2004b) Recruitment of mesenchymal stem cells and expression of TGF-beta 1 and VEGF in the early stage of shock wave-promoted bone regeneration of segmental defect in rats. J Orthop Res 22: 526–534PubMedCrossRefPubMedCentralGoogle Scholar
  16. Dawson J, Kiner D, Gardner W, 2nd, Swafford R, Nowotarski PJ (2014) The reamer-irrigator-aspirator as a device for harvesting bone graft compared with iliac crest bone graft: union rates and complications. J Orthop Trauma 28: 584–590Google Scholar
  17. De Miguel MP, Fuentes-Julian S, Blazquez-Martinez A, Pascual CY, Aller MA, Arias J, Arnalich-Montiel F (2012) Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr Mol Med 12: 574–591Google Scholar
  18. Dimitriou R, Mataliotakis GI, Angoules AG, Kanakaris NK, Giannoudis PV (2011) Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury 42 Suppl 2: S3–15PubMedCrossRefPubMedCentralGoogle Scholar
  19. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8: 315–317CrossRefGoogle Scholar
  20. Dumont N, Boyer L, Emond H, Celebi-Saltik B, Pasha R, Bazin R, Mantovani D, Roy DC, Pineault N (2014) Medium conditioned with mesenchymal stromal cell-derived osteoblasts improves the expansion and engraftment properties of cord blood progenitors. Exp Hematol 42: 741–752 e741CrossRefGoogle Scholar
  21. Duscher D, Atashroo D, Maan ZN, Luan A, Brett EA, Barrera J, Khong SM, Zielins ER, Whittam AJ, Hu MS, Walmsley GG, Pollhammer MS, Schmidt M, Schilling AF, Machens HG, Huemer GM, Wan DC, Longaker MT, Gurtner GC (2016) Ultrasound-Assisted Liposuction Does Not Compromise the Regenerative Potential of Adipose-Derived Stem Cells. Stem Cells Transl Med 5: 248–257PubMedCrossRefPubMedCentralGoogle Scholar
  22. Garimella R, Tague SE, Zhang J, Belibi F, Nahar N, Sun BH, Insogna K, Wang J, Anderson HC (2008) Expression and synthesis of bone morphogenetic proteins by osteoclasts: a possible path to anabolic bone remodeling. J Histochem Cytochem 56: 569–577CrossRefGoogle Scholar
  23. Ghadakzadeh S, Mekhail M, Aoude A, Tabrizian M, Hamdy RC (2016) Small Players Ruling the Hard Game: siRNA in Bone Regeneration. J Bone Miner Res 31: 1481PubMedCrossRefPubMedCentralGoogle Scholar
  24. Harford JS, Dekker TJ, Adams SB (2016) Bone Marrow Aspirate Concentrate for Bone Healing in Foot and Ankle Surgery. Foot Ankle Clin 21: 839–845PubMedCrossRefPubMedCentralGoogle Scholar
  25. Harrell DB, Caradonna E, Mazzucco L, Gudenus R, Amann B, Prochazka V, Giannoudis PV, Hendrich C, Jager M, Krauspe R, Hernigou P (2015) Non-Hematopoietic Essential Functions of Bone Marrow Cells: A Review of Scientific and Clinical Literature and Rationale for Treating Bone Defects. Orthop Rev (Pavia) 7: 5691Google Scholar
  26. Haversath M, Catelas I, Li X, Tassemeier T, Jager M (2012) PGE(2) and BMP-2 in bone and cartilage metabolism: 2 intertwining pathways. Can J Physiol Pharmacol 90: 1434–1445PubMedCrossRefPubMedCentralGoogle Scholar
  27. Haversath M, Hulsen T, Boge C, Tassemeier T, Landgraeber S, Herten M, Warwas S, Krauspe R, Jager M (2016) Osteogenic differentiation and proliferation of bone marrow-derived mesenchymal stromal cells on PDLLA + BMP-2-coated titanium alloy surfaces. J Biomed Mater Res A 104: 145–154PubMedCrossRefPubMedCentralGoogle Scholar
  28. Hendrich C, Franz E, Waertel G, Krebs R, Jager M (2009) Safety of autologous bone marrow aspiration concentrate transplantation: initial experiences in 101 patients. Orthop Rev (Pavia) 1: e32CrossRefGoogle Scholar
  29. Hernigou P, Dubory A, Roubineau F, Homma Y, Flouzat-Lachaniette CH, Chevallier N, Rouard H (2017) Allografts supercharged with bone-marrow-derived mesenchymal stem cells possess equivalent osteogenic capacity to that of autograft: a study with long-term follow-ups of human biopsies. Int Orthop 41: 127–132PubMedCrossRefPubMedCentralGoogle Scholar
  30. Hernigou P, Flouzat-Lachaniette CH, Delambre J, Poignard A, Allain J, Chevallier N, Rouard H (2015) Osteonecrosis repair with bone marrow cell therapies: state of the clinical art. Bone 70: 102–109PubMedCrossRefPubMedCentralGoogle Scholar
  31. Hernigou P, Mathieu G, Poignard A, Manicom O, Beaujean F, Rouard H (2006) Percutaneous autologous bone-marrow grafting for nonunions. Surgical technique. J Bone Joint Surg Am 88 Suppl 1 Pt 2: 322–327CrossRefGoogle Scholar
  32. Hernigou P, Poignard A, Beaujean F, Rouard H (2005) Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am 87: 1430–1437PubMedPubMedCentralGoogle Scholar
  33. Hernigou P, Poignard A, Zilber S, Rouard H (2009) Cell therapy of hip osteonecrosis with autologous bone marrow grafting. Indian J Orthop 43: 40–45PubMedCrossRefPubMedCentralGoogle Scholar
  34. Hernigou P, Trousselier M, Roubineau F, Bouthors C, Chevallier N, Rouard H, Flouzat-Lachaniette CH (2016) Local transplantation of bone marrow concentrated granulocytes precursors can cure without antibiotics infected nonunion of polytraumatic patients in absence of bone defect. Int Orthop 40: 2331–2338PubMedCrossRefPubMedCentralGoogle Scholar
  35. Homma Y, Zimmermann G, Hernigou P (2013) Cellular therapies for the treatment of non-union: the past, present and future. Injury 44 Suppl 1: S46–49PubMedCrossRefPubMedCentralGoogle Scholar
  36. Huang XP, Ludke A, Dhingra S, Guo J, Sun Z, Zhang L, Weisel RD, Li RK (2016) Class II transactivator knockdown limits major histocompatibility complex II expression, diminishes immune rejection, and improves survival of allogeneic bone marrow stem cells in the infarcted heart. FASEB J 30: 3069–3082PubMedCrossRefPubMedCentralGoogle Scholar
  37. Hunziker EB, Enggist L, Kuffer A, Buser D, Liu Y (2012) Osseointegration: the slow delivery of BMP-2 enhances osteoinductivity. Bone 51: 98–106PubMedCrossRefPubMedCentralGoogle Scholar
  38. Ingenieure VD (2017) Biomaterialien in der Medizin – Klassifikation, Anwendungen und Anforderungen. VDI 5701. Beuth-Verlag Gmbh, Berlin, Wien, ZürichGoogle Scholar
  39. Jäger M, Hernigou P, Zilkens C, Herten M, Li X, Fischer J, Krauspe R (2010) Cell therapy in bone healing disorders. Orthop Rev (Pavia) 2: e20CrossRefGoogle Scholar
  40. Jäger M, Herten M, Fochtmann U, Fischer J, Hernigou P, Zilkens C, Hendrich C, Krauspe R (2011) Bridging the gap: bone marrow aspiration concentrate reduces autologous bone grafting in osseous defects. J Orthop Res 29: 173–180PubMedCrossRefPubMedCentralGoogle Scholar
  41. Jäger M, Wild A, Lensing-Hohn S, Krauspe R (2003) Influence of different culture solutions on osteoblastic differentiation in cord blood and bone marrow derived progenitor cells. Biomed Tech (Berl) 48: 241–244Google Scholar
  42. Kemper O, Herten M, Fischer J, Haversath M, Beck S, Classen T, Warwas S, Tassemeier T, Landgraeber S, Lensing-Hohn S, Krauspe R, Jager M (2014) Prostacyclin suppresses twist expression in the presence of indomethacin in bone marrow-derived mesenchymal stromal cells. Med Sci Monit 20: 2219–2227PubMedCrossRefPubMedCentralGoogle Scholar
  43. Khafagy WW, El-Said MM, Thabet WM, Aref SE, Omar W, Emile SH, Elfeki H, El-Ghonemy MS, El-Shobaky MT (2017) Evaluation of anatomical and functional results of overlapping anal sphincter repair with or without the injection of bone marrow aspirate concentrate: a case-control study. Colorectal Dis 19: O66-O74PubMedCrossRefPubMedCentralGoogle Scholar
  44. Le Nail LR, Stanovici J, Fournier J, Splingard M, Domenech J, Rosset P (2014) Percutaneous grafting with bone marrow autologous concentrate for open tibia fractures: analysis of forty three cases and literature review. Int Orthop 38: 1845–1853Google Scholar
  45. Lebouvier A, Poignard A, Coquelin-Salsac L, Leotot J, Homma Y, Jullien N, Bierling P, Galacteros F, Hernigou P, Chevallier N, Rouard H (2015) Autologous bone marrow stromal cells are promising candidates for cell therapy approaches to treat bone degeneration in sickle cell disease. Stem Cell Res 15: 584–594PubMedCrossRefPubMedCentralGoogle Scholar
  46. Leckenby JI, Grobbelaar AO, Aston W (2013) The use of a free vascularised fibula to reconstruct the radius following the resection of an osteosarcoma in a paediatric patient. J Plast Reconstr Aesthet Surg 66: 427–429CrossRefGoogle Scholar
  47. Lee DH, Ryu KJ, Kim JW, Kang KC, Choi YR (2014) Bone marrow aspirate concentrate and platelet-rich plasma enhanced bone healing in distraction osteogenesis of the tibia. Clin Orthop Relat Res 472: 3789–3797CrossRefGoogle Scholar
  48. Lindner U, Kramer J, Rohwedel J, Schlenke P (2010) Mesenchymal Stem or Stromal Cells: Toward a Better Understanding of Their Biology? Transfus Med Hemother 37: 75–83PubMedCrossRefPubMedCentralGoogle Scholar
  49. Lysdahl H, Baatrup A, Foldager CB, Bunger C (2014) Preconditioning Human Mesenchymal Stem Cells with a Low Concentration of BMP 2 Stimulates Proliferation and Osteogenic Differentiation In Vitro. Biores Open Access 3: 278–285PubMedCrossRefPubMedCentralGoogle Scholar
  50. Phillips M, Cataneo RN, Greenberg J, Gunawardena R, Naidu A, Rahbari-Oskoui F (2000) Effect of age on the breath methylated alkane contour, a display of apparent new markers of oxidative stress. J Lab Clin Med 136: 243–249PubMedCrossRefPubMedCentralGoogle Scholar
  51. Pilge H, Bittersohl B, Schneppendahl J, Hesper T, Zilkens C, Ruppert M, Krauspe R, Jager M (2016) Bone Marrow Aspirate Concentrate in Combination With Intravenous Iloprost Increases Bone Healing in Patients With Avascular Necrosis of the Femoral Head: A Matched Pair Analysis. Orthop Rev (Pavia) 8: 6902Google Scholar
  52. Pototschnig H, Schaff J, Kovacs L, Biemer E, Papadopulos NA (2013) The free osteofasciocutaneous fibula flap: clinical applications and surgical considerations. Injury 44: 366–369PubMedCrossRefPubMedCentralGoogle Scholar
  53. Qin Y, Wang L, Gao Z, Chen G, Zhang C (2016a) Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo. Sci Rep 6: 21961Google Scholar
  54. Qin Y, Ye J, Wang P, Gao L, Wang S, Shen H (2016b) miR-223 contributes to the AGE-promoted apoptosis via down-regulating insulin-like growth factor 1 receptor in osteoblasts. Biosci Rep 36: pii: e00314PubMedCrossRefPubMedCentralGoogle Scholar
  55. Raabe O, Shell K, Goessl A, Crispens C, Delhasse Y, Eva A, Scheiner-Bobis G, Wenisch S, Arnhold S (2013) Effect of extracorporeal shock wave on proliferation and differentiation of equine adipose tissue-derived mesenchymal stem cells in vitro. Am J Stem Cells 2: 62–73Google Scholar
  56. Schottel PC, Warner SJ (2017) Role of Bone Marrow Aspirate in Orthopedic Trauma. Orthop Clin North Am 48: 311–321PubMedCrossRefPubMedCentralGoogle Scholar
  57. Shan HT, Zhang HB, Chen WT, Chen FZ, Wang T, Luo JT, Yue M, Lin JH, Wei AY (2017) Combination of low-energy shock-wave therapy and bone marrow mesenchymal stem cell transplantation to improve the erectile function of diabetic rats. Asian J Androl 19: 26–33Google Scholar
  58. Shin SR, Tornetta P 3rd (2016) Donor Site Morbidity After Anterior Iliac Bone Graft Harvesting. J Orthop Trauma 30: 340–343PubMedCrossRefPubMedCentralGoogle Scholar
  59. Smyth NA, Murawski CD, Haleem AM, Hannon CP, Savage-Elliott I, Kennedy JG (2012) Establishing proof of concept: Platelet-rich plasma and bone marrow aspirate concentrate may improve cartilage repair following surgical treatment for osteochondral lesions of the talus. World J Orthop 3: 101–108PubMedCrossRefPubMedCentralGoogle Scholar
  60. Verordnung (EG) Nr. 1394/2007 des Europäischen Parlaments und des Rates vom 13. November 2007 über Arzneimittel für neuartige Therapien und zur Änderung der Richtlinie 2001/83/EG und der Verordnung (EG) (2007). Amtsblatt L Nr. 726/2004 (Nr. 324): 121–137Google Scholar
  61. Wang FS, Wang CJ, Chen YJ, Chang PR, Huang YT, Sun YC, Huang HC, Yang YJ, Yang KD (2004) Ras induction of superoxide activates ERK-dependent angiogenic transcription factor HIF-1alpha and VEGF-A expression in shock wave-stimulated osteoblasts. J Biol Chem 279: 10331–10337PubMedCrossRefPubMedCentralGoogle Scholar
  62. Wang FS, Wang CJ, Sheen-Chen SM, Kuo YR, Chen RF, Yang KD (2002) Superoxide mediates shock wave induction of ERK-dependent osteogenic transcription factor (CBFA1) and mesenchymal cell differentiation toward osteoprogenitors. J Biol Chem 277: 10931–10937PubMedCrossRefPubMedCentralGoogle Scholar
  63. Wang X, Wei F, Luo F, Huang K, Xie Z (2015) Induction of granulation tissue for the secretion of growth factors and the promotion of bone defect repair. J Orthop Surg Res 10: 147Google Scholar
  64. Zhao Y, Wang J, Wang M, Sun P, Chen J, Jin X, Zhang H (2013) Activation of bone marrow-derived mesenchymal stromal cells-a new mechanism of defocused low-energy shock wave in regenerative medicine. Cytotherapy 15: 1449–1457PubMedCrossRefPubMedCentralGoogle Scholar
  65. Zhong W, Sumita Y, Ohba S, Kawasaki T, Nagai K, Ma G, Asahina I (2012) In vivo comparison of the bone regeneration capability of human bone marrow concentrates vs. platelet-rich plasma. PLoS One 7: e40833PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2018

Authors and Affiliations

  • Ralf Skripitz
    • 1
  • Andreas Roth
    • 2
  • Klaus M. Peters
    • 3
  • Gerald Zimmermann
    • 4
  • Hans Goost
    • 5
  • Thomas Randau
    • 6
  • Marcus Jäger
    • 7
  • Ulrich Nöth
    • 8
  • Marcel Haversath
    • 7
  1. 1.Zentrum für Endoprothetik, Fußchirurgie, Kinder- und Allgemeine OrthopädieRoland Klinik gemeinnützige GmbHBremenDeutschland
  2. 2.Klinik für Orthopädie, Unfallchirurgie und Plastische ChirurgieUniversität LeipzigLeipzigDeutschland
  3. 3.Orthopädie und OsteologieDr. Becker Rhein-Sieg-KlinikNümbrechtDeutschland
  4. 4.Klinik für UnfallchirurgieTheresienkrankenhaus und St. Hedwig Klinik GmbHMannheimDeutschland
  5. 5.Unfallchirurgie und OrthopädieKreiskrankenhaus Wermelskirchen GmbHWermelskirchenDeutschland
  6. 6.Klinik und Poliklinik für Orthopädie und UnfallchirurgieUniversitätsklinikum BonnBonnDeutschland
  7. 7.Klinik für Orthopädie und UnfallchirurgieUniversitätsklinikum EssenEssenDeutschland
  8. 8.Evangelisches Waldkrankenhaus SpandauKrankenhausbetriebs gGmbHBerlinDeutschland

Personalised recommendations