Context-Aware Personalization for Smart Mobile Cloud Services

  • Waldemar HummerEmail author
  • Stefan Schulte
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9586)


The advent of the Internet of Things and the increasing sensorization of smart devices that surround us in our everyday lives are spurring the demand for context-aware applications to offer personalized services. With the rapid advances in sensor technology, distributed software architectures and backend infrastructures need to be able to systematically deal with increasing amounts of real-time context data. In this paper, we present an approach for intelligent service clouds to cater for the new challenges associated with complex context-aware applications. Based on an illustrative scenario from the connected car domain, we introduce a detailed system model and approach for context-based personalization of mobile services. Our solution focuses on a three-phase approach with context change analysis, context state management, and context-triggered adaptation actions. We discuss details of our prototype implementation and put the contributions into perspective with the related work. After discussing our preliminary results, we draw a roadmap for future work towards context-aware vehicle information systems.


Cloud Service Context Change Service Personalization User Context Context Attribute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is partially supported by the European Union within the SIMPLI-CITY FP7-ICT project (Grant agreement no. 318201).


  1. 1.
    Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. Int. J. Ad Hoc Ubiquit. Comput. 2(4), 263–277 (2007)CrossRefGoogle Scholar
  3. 3.
    Bellavista, P., Corradi, A., Fanelli, M., Foschini, L.: A survey of context data distribution for mobile ubiquitous systems. ACM Comput. Surv. 44(4), 24 (2012)CrossRefGoogle Scholar
  4. 4.
    Bellotti, V., Edwards, K.: Intelligibility and accountability: human considerations in context-aware systems. Hum.-Comput. Interact. 16(2–4), 193–212 (2001)CrossRefGoogle Scholar
  5. 5.
    Bernhardt, T., Vasseur, A.: Esper: event stream processing and correlation. ONJava, in OReilly (2007).
  6. 6.
    Bolchini, C., Curino, C.A., Quintarelli, E., Schreiber, F.A., Tanca, L.: A data-oriented survey of context models. ACM Sigmod Rec. 36(4), 19–26 (2007)CrossRefGoogle Scholar
  7. 7.
    Brogi, A., Cámara, J., Canal, C., Cubo, J., Pimentel, E.: Dynamic contextual adaptation. Electron. Notes Theoret. Comput. Sci. 175(2), 81–95 (2007)CrossRefGoogle Scholar
  8. 8.
    Chen, H., Finin, T., Joshi, A.: An ontology for context-aware pervasive computing environments. Knowl. Eng. Rev. 18(03), 197–207 (2003)CrossRefGoogle Scholar
  9. 9.
    Cugola, G., Margara, A.: Processing flows of information: from data stream to complex event processing. ACM Comput. Surv. (CSUR) 44(3), 15 (2012)CrossRefGoogle Scholar
  10. 10.
    Eichler, S., Schroth, C., Kosch, T., Strassberger, M.: Strategies for context-adaptive message dissemination in vehicular ad hoc networks. In: MOBIQUITOUS (2006)Google Scholar
  11. 11.
    Gansel, S., Schnitzer, S., et al.: An access control concept for novel automotive HMI systems. In: ACM SACMAT 2014, pp. 17–28. ACM (2014)Google Scholar
  12. 12.
    Gu, T., Pung, H., Zhang, D.Q.: A service-oriented middleware for building context-aware services. J. Netw. Comput. Appl. 28(1), 1–18 (2005)CrossRefGoogle Scholar
  13. 13.
    Hella, L., Krogstie, J.: Using Semantic Web for Mobile Services Personalization. Int. J. u-and e-Serv. Sci. Technol. 7(2), 221–238 (2014)CrossRefGoogle Scholar
  14. 14.
    Hu, G., Wu, B., Chen, J.: Dynamic adaptation of business process based on context changes: a rule-oriented approach. In: PACEB Workshop @ ICSOC (2014)Google Scholar
  15. 15.
    Hummer, W., Inzinger, C., Leitner, P., Satzger, B., Dustdar, S.: Deriving a unified fault taxonomy for event-based systems. In: 6th ACM DEBS Conference (2012)Google Scholar
  16. 16.
    Hummer, W., Leitner, P., Satzger, B., Dustdar, S.: Dynamic migration of processing elements for optimized query execution in event-based systems. In: DOA (2011)Google Scholar
  17. 17.
    Hummer, W., Rosenberg, F., Oliveira, F., Eilam, T.: Testing idempotence for infrastructure as code. In: Eyers, D., Schwan, K. (eds.) Middleware 2013. LNCS, vol. 8275, pp. 368–388. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    Hummer, W., Schulte, S., Hoenisch, P., Dustdar, S.: Context-aware data prefetching in mobile service environments. In: BDCloud Conference, pp. 214–221. IEEE (2014)Google Scholar
  19. 19.
    Inzinger, C., Hummer, W., et al.: Generic event-based monitoring and adaptation methodology for heterogeneous distributed systems. SPE 44(7), 805–822 (2014)Google Scholar
  20. 20.
    Kemp, C., Gyger, B.: Professional Heroku Programming. Wiley, Chichester (2013)Google Scholar
  21. 21.
    Kumar, A., Yao, W.: Design and management of flexible process variants using templates and rules. Comput. Ind. 63(2), 112–130 (2012)CrossRefGoogle Scholar
  22. 22.
    Ouedraogo, W., Biennier, F., Merle, P.: Contextualised security operation deployment through mds@run.time architecture. In: ISC Workshop @ ICSOC (2014)Google Scholar
  23. 23.
    Pahl, C., Casey, M.: Ontology support for web service processes. ACM SIGSOFT Softw. Eng. Notes 28, 208–216 (2003)CrossRefGoogle Scholar
  24. 24.
    Swan, M.: Connected car: quantified self becomes quantified car. JSAN 4(1), 2–29 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Wang, W., Zong, S., Yu, J., Yongchareon, S.: Modelling web service personalization with rule nets. In: Liu, C., He, J., Huang, G., Huang, Z. (eds.) WISE Workshops 2013. LNCS, vol. 8182, pp. 228–238. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  26. 26.
    Yu, J., Han, J., Sheng, Q.Z., Gunarso, S.O.: PerCAS: an approach to enabling dynamic and personalized adaptation for context-aware services. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) Service Oriented Computing. LNCS, vol. 7636, pp. 173–190. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Distributed Systems GroupTu WienWienAustria

Personalised recommendations