Advertisement

Biogeochemistry

  • Ralf Schiebel
  • Christoph Hemleben
Chapter

Abstract

The calcareous planktic foraminifer shell has been analyzed for its chemical composition, and assumed proxy of the chemical composition of seawater since the pioneering works of Samuel Epstein and Cesare Emiliani in the 1950s (e.g., Epstein et al. in Geol Soc Am Bull 62:417–426, 1951; Emiliani in J Geol 63:538–578, 1955).

References

  1. Allen KA, Hönisch B, Eggins SM, Yu J, Spero HJ, Elderfield H (2011) Controls on boron incorporation in cultured tests of the planktic foraminifer Orbulina universa. Earth Planet Sci Lett 309:291–301. doi: 10.1016/j.epsl.2011.07.010CrossRefGoogle Scholar
  2. Anand P, Elderfield H, Conte MH (2003) Calibration of Mg/Ca thermometry in planktonic Foraminifera from a sediment trap time series. Paleoceanography 18:1050. doi: 10.1029/2002PA000846CrossRefGoogle Scholar
  3. Anderson OR, Faber WW (1984) An estimation of calcium carbonate deposition rate in a planktonic foraminifer Globigerinoides sacculifer using 45Ca as a tracer; a recommended procedure for improved accuracy. J foraminifer Res 14:303–308. doi: 10.2113/gsjfr.14.4.303CrossRefGoogle Scholar
  4. Arbuszewski J, deMenocal P, Kaplan A, Farmer EC (2010) On the fidelity of shell-derived δ18Oseawater estimates. Earth Planet Sci Lett 300:185–196. doi: 10.1016/j.epsl.2010.10.035CrossRefGoogle Scholar
  5. Archer DE, Winguth A, Lea D, Mahowald N (2000) What caused the glacial/interglacial atmospheric pCO2 cycles? Rev Geophys 38:159–189. doi: 10.1029/1999RG000066CrossRefGoogle Scholar
  6. Barker S, Broecker W, Clark E, Hajdas I (2007) Radiocarbon age offsets of Foraminifera resulting from differential dissolution and fragmentation within the sedimentary bioturbated zone. Paleoceanography. doi: 10.1029/2006PA001354CrossRefGoogle Scholar
  7. Barker S, Elderfield H (2002) foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2. Science 297:833–836. doi: 10.1126/science.1072815CrossRefGoogle Scholar
  8. Bé AWH (1980) Gametogenic calcification in a spinose planktonic foraminifer, Globigerinoides sacculifer (Brady). Mar Micropaleontol 5:283–310. doi: 10.1016/0377-8398(80)90014-6CrossRefGoogle Scholar
  9. Bé AWH, Tolderlund DS (1971) Distribution and ecology of living planktonic Foraminifera in surface waters of the Atlantic and Indian Oceans. In: Funnell BM, Riedel WR (eds) The micropalaeontology of oceans. University Press, Cambridge, pp 105–149Google Scholar
  10. Bednaršek N, Tarling GA, Bakker DCE, Fielding S, Jones EM, Venables HJ, Ward P, Kuzirian A, Lézé B, Feely RA, Murphy EJ (2012) Extensive dissolution of live pteropods in the Southern Ocean. Nat Geosci 5:881–885. doi: 10.1038/ngeo1635CrossRefGoogle Scholar
  11. Beer CJ, Schiebel R, Wilson PA (2010) Testing planktic foraminiferal shell weight as a surface water [CO32−] proxy using plankton net samples. Geology 38:103–106. doi: 10.1130/G30150.1CrossRefGoogle Scholar
  12. Bemis BE, Spero HJ, Bijma J, Lea DW (1998) Reevaluation of the oxygen isotopic composition of planktonic Foraminifera: experimental results and revised paleotemperature equations. Paleoceanography 13:150–160Google Scholar
  13. Bemis BE, Spero HJ, Lea DW, Bijma J (2000) Temperature influence on the carbon isotopic composition of Globigerina bulloides and Orbulina universa (planktonic Foraminifera). Mar Micropaleontol 38:213–228Google Scholar
  14. Bemis BE, Spero HJ, Thunell RC (2002) Using species-specific paleotemperature equations with Foraminifera: a case study in the Southern California Bight. Mar Micropaleontol 46:405–430. doi: 10.1016/S0377-8398(02)00083-XCrossRefGoogle Scholar
  15. Bentov S, Erez J (2006) Impact of biomineralization processes on the Mg content of foraminiferal shells: a biological perspective. Geochem Geophys Geosyst. doi: 10.1029/2005GC001015CrossRefGoogle Scholar
  16. Berelson WM (2002) Particle settling rates increase with depth in the ocean. Deep-Sea Res II 49:237–251. doi: 10.1016/S0967-0645(01)00102-3CrossRefGoogle Scholar
  17. Berger WH (1971) Sedimentation of planktonic Foraminifera. Mar Geol 11:325–358. doi: 10.1016/0025-3227(71)90035-1CrossRefGoogle Scholar
  18. Berger WH, Killingley JS, Vincent E (1978) Stable isotopes in deep-sea carbonates: box core ERDC-92, west equatorial Pacific. Oceanol Acta 1:203–216Google Scholar
  19. Bijma J, Spero HJ, Lea DW (1999) Reassessing foraminiferal stable isotope geochemistry: impact of the oceanic carbonate system (experimental results). In: Fischer G, Wefer G (eds) Use of proxies in paleoceanography. Springer, Berlin, Heidelberg, pp 489–512Google Scholar
  20. Billups K, Spero HJ (1995) Relationship between shell size, thickness and stable isotopes in individual planktonic Foraminifera from two equatorial Atlantic cores. J foraminifer Res 25:24–37Google Scholar
  21. Birch H, Coxall HK, Pearson PN, Kroon D, O’Regan M (2013) Planktonic Foraminifera stable isotopes and water column structure: disentangling ecological signals. Mar Micropaleontol 101:127–145Google Scholar
  22. Bolton A, Baker JA, Dunbar GB, Carter L, Smith EGC, Neil HL (2011) Environmental versus biological controls on Mg/Ca variability in Globigerinoides ruber (white) from core top and plankton tow samples in the southwest Pacific Ocean. Paleoceanography 26:PA2219. doi: 10.1029/2010PA001924CrossRefGoogle Scholar
  23. Boussetta S, Bassinot F, Sabbatini A, Caillon N, Nouet J, Kallel N, Rebaubier H, Klinkhammer G, Labeyrie L (2011) Diagenetic Mg-rich calcite in Mediterranean sediments: quantification and impact on foraminiferal Mg/Ca thermometry. Mar Geol 280:195–204. doi: 10.1016/j.margeo.2010.12.011CrossRefGoogle Scholar
  24. Bouvier-Soumagnac Y, Duplessy JC (1985) Carbon and oxygen isotopic composition of planktonic Foraminifera from laboratory culture, plankton tows and Recent sediment; implications for the reconstruction of paleoclimatic conditions and of the global carbon cycle. J foraminifer Res 15:302–320. doi: 10.2113/gsjfr.15.4.302CrossRefGoogle Scholar
  25. Boyle EA (1981) Cadmium, zinc, copper, and barium in Foraminifera tests. Earth Planet Sci Lett 53:11–35. doi: 10.1016/0012-821X(81)90022-4CrossRefGoogle Scholar
  26. Boyle EA (1988) Cadmium: chemical tracer of deepwater paleoceanography. Paleoceanography 3:471–489. doi: 10.1029/PA003i004p00471CrossRefGoogle Scholar
  27. Boyle EA (2006) A direct proxy for oceanic phosphorus? Science 312:1758–1759Google Scholar
  28. Boyle EA, Sclater F, Edmond JM (1976) On the marine geochemistry of cadmium. Nature 263:42–44. doi: 10.1038/263042a0CrossRefGoogle Scholar
  29. Bramlette MN (1958) Significance of coccolithophorids in calcium-carbonate deposition. Geol Soc Am Bull 69:121. doi: 10.1130/0016-7606(1958)69[121:SOCICD]2.0.CO;2CrossRefGoogle Scholar
  30. Brand WA, Coplen TB, Vogl J, Rosner M, Prohaska T (2014) Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report). Pure Appl Chem 86(3): 425–467. doi: 10.1515/pac-2013-1023CrossRefGoogle Scholar
  31. Branson O, Redfern SAT, Tyliszczak T, Sadekov A, Langer G, Kimoto K, Elderfield H (2013) The coordination of Mg in foraminiferal calcite. Earth Planet Sci Lett 383:134–141. doi: 10.1016/j.epsl.2013.09.037CrossRefGoogle Scholar
  32. Broecker WS, Clark E (2003) CaCO3 dissolution in the deep sea: paced by insolation cycles. Geochem Geophys Geosyst 4:1059. doi: 10.1029/2002GC000450CrossRefGoogle Scholar
  33. Broecker WS, Clark E (1999) CaCO3 size distribution: a paleocarbonate ion proxy? Paleoceanography 14:596–604. doi: 10.1029/1999PA900016CrossRefGoogle Scholar
  34. Broecker WS, Peng TH (1982) Tracers in the Sea. Eldigio Press, New YorkGoogle Scholar
  35. Brown SJ, Elderfield H (1996) Variations in Mg/Ca and Sr/Ca ratios of planktonic Foraminifera caused by postdepositional dissolution: evidence of shallow Mg-dependent dissolution. Paleoceanography 11:543–551. doi: 10.1029/96PA01491CrossRefGoogle Scholar
  36. Caldeira K, Wickett ME (2003) Oceanography: anthropogenic carbon and ocean pH. Nature 425:365. doi: 10.1038/425365aCrossRefGoogle Scholar
  37. Cléroux C, Lynch-Stieglitz J, Schmidt MW, Cortijo E, Duplessy JC (2009) Evidence for calcification depth change of Globorotalia truncatulinoides between deglaciation and Holocene in the western Atlantic Ocean. Mar Micropaleontol 73:57–61Google Scholar
  38. Coplen TB (1994) Reporting of stable hydrogen, carbon, and oxygen isotopic abundances (Technical Report). Pure Appl Chem. doi: 10.1351/pac199466020273CrossRefGoogle Scholar
  39. Cronblad HG, Malmgren BA (1981) Climatically controlled variation of Sr and Mg in Quaternary planktonic Foraminifera. Nature 291:61–64Google Scholar
  40. Cullen JT (2006) On the nonlinear relationship between dissolved cadmium and phosphate in the modern global ocean: Could chronic iron limitation of phytoplankton growth cause the kink? Limnol Oceanogr 51:1369–1380Google Scholar
  41. Cullen JT, Lane TW, Morel FMM, Sherrell RM (1999) Modulation of cadmium uptake in phytoplankton by seawater CO2 concentration. Nature 402:165–167Google Scholar
  42. Dekens PS, Lea DW, Pak DK, Spero HJ (2002) Core top calibration of Mg/Ca in tropical Foraminifera: refining paleotemperature estimation. Geochem Geophys Geosyst 3:1–29. doi: 10.1029/2001GC000200CrossRefGoogle Scholar
  43. Delaney ML (1989) Uptake of cadmium into calcite shells by planktonic Foraminifera. Chem Geol 78:159–165Google Scholar
  44. De Moel H, Ganssen GM, Peeters FJC, Jung SJA, Kroon D, Brummer GJA, Zeebe RE (2009) Planktic foraminiferal shell thinning in the Arabian Sea due to anthropogenic ocean acidification? Biogeosciences 6:1917–1925. doi: 10.5194/bg-6-1917-2009CrossRefGoogle Scholar
  45. Dennis KJ, Affek HP, Passey BH, Schrag DP, Eiler JM (2011) Defining an absolute reference frame for “clumped” isotope studies of CO2. Geochim Cosmochim Acta 75:7117–7131Google Scholar
  46. De Nooijer LJ, Spero HJ, Erez J, Bijma J, Reichart GJ (2014) Biomineralization in perforate Foraminifera. Earth-Sci Rev 135:48–58Google Scholar
  47. Derry LA (2009) Geochemistry: a glacial hangover. Nature 458:417–418. doi: 10.1038/458417aCrossRefGoogle Scholar
  48. Dittert N, Baumann KH, Bickert T, Henrich R, Huber R, Kinkel H, Meggers H (1999) Carbonate dissolution in the deep-sea: methods, quantification and paleoceanographic application. In: Fischer G, Wefer G (eds) Use of proxies in paleoceanography. Springer, Berlin, pp 255–284Google Scholar
  49. Dueñas-Bohórquez A, da Rocha RE, Kuroyanagi A, Bijma J, Reichart GJ (2009) Effect of salinity and seawater calcite saturation state on Mg and Sr incorporation in cultured planktonic Foraminifera. Mar Micropaleontol 73:178–189Google Scholar
  50. Duplessy JC, Bé AWH, Blanc PL (1981) Oxygen and carbon isotopic composition and biogeographic distribution of planktonic Foraminifera in the Indian Ocean. Palaeogeogr Palaeoclimatol Palaeoecol 33:9–46Google Scholar
  51. Eggins S, De Dekker P, Marshall J (2003) Mg/Ca variation in planktonic Foraminifera tests: implications for reconstructing palaeo-seawater temperature and habitat migration. Earth Planet Sci Lett 212:291–306Google Scholar
  52. Eggins S, Sadekov A, De Deckker P (2004) Modulation and daily banding of Mg/Ca in Orbulina universa tests by symbiont photosynthesis and respiration: a complication for seawater thermometry? Earth Planet Sci Lett 225:411–419Google Scholar
  53. Eiler JM (2007) “Clumped-isotope” geochemistry—The study of naturally-occurring, multiply-substituted isotopologues. Earth Planet Sci Lett 262:309–327Google Scholar
  54. Elderfield H, Ganssen G (2000) Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios. Nature 405:442–445Google Scholar
  55. Elderfield H, Rickaby REM (2000) Oceanic Cd/P ratio and nutrient utilization in the glacial Southern Ocean. Nature 405:305–310Google Scholar
  56. Elderfield H, Vautravers M, Cooper M (2002) The relationship between shell size and Mg/Ca, Sr/Ca, δ18O, and δ13C of species of planktonic Foraminifera. Geochem Geophys Geosyst 3:1–13. doi: 10.1029/2001GC000194CrossRefGoogle Scholar
  57. Emiliani C (1955) Pleistocene temperatures. J Geol 63:538–578Google Scholar
  58. Emiliani C (1954) Depth habitats of some species of pelagic Foraminifera as indicated by oxygen isotope ratios. Am J Sci 252:149–158Google Scholar
  59. Epstein S, Buchsbaum R, Lowenstam HA, Urey HC (1953) Revised carbonate-water isotopic temperature scale. Geol Soc Am Bull 64:1315–1326Google Scholar
  60. Epstein S, Buchsbaum R, Lowenstam H, Urey HC (1951) Carbonate-water isotopic temperature scale. Geol Soc Am Bull 62:417–426Google Scholar
  61. Epstein S, Mayeda T (1953) Variation of 18O content of waters from natural sources. Geochim Cosmochim Acta 4:213–224Google Scholar
  62. Erez J (1978) Vital effect on stable-isotope composition seen in Foraminifera and coral skeletons. Nature 273:199–202Google Scholar
  63. Erez J, Luz B (1983) Experimental paleotemperature equation for planktonic Foraminifera. Geochim Cosmochim Acta 47:1025–1031Google Scholar
  64. Erez J, Luz B (1982) Temperature control of oxygen-isotope fractionation of cultured planktonic Foraminifera. Nature 297:220–222Google Scholar
  65. Ezard THG, Edgar KM, Hull PM (2015) Environmental and biological controls on size-specific δ13C and δ18O in recent planktonic Foraminifera. Paleoceanography 30. doi: 10.1002/2014PA002735CrossRefGoogle Scholar
  66. Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366Google Scholar
  67. Fischer G, Wefer G (1999) Use of proxies in paleoceanography: examples from the South Atlantic. Springer, Berlin, HeidelbergGoogle Scholar
  68. Friedrich O, Schiebel R, Wilson PA, Weldeab S, Beer CJ, Cooper MJ, Fiebig J (2012) Influence of test size, water depth, and ecology on Mg/Ca, Sr/Ca, δ18O and δ13C in nine modern species of planktic foraminifers. Earth Planet Sci Lett 319–320:133–145. doi: 10.1016/j.epsl.2011.12.002CrossRefGoogle Scholar
  69. Ganssen G (1983) Dokumentation von küstennahem Auftrieb anhand stabiler Isotope in Rezenten Foraminiferen vor Nordwest-Afrika. Meteor Forschungsergebnisse Reihe C 1–46Google Scholar
  70. Garcia HE, Locarnini RA, Boyer TP, Antonov JI (2006) World Ocean Atlas 2005. Vol. 4, Nutrients (phosphate, nitrate, silicate). In: Levitus S (ed) NOAA Atlas NESDIS 64. NOAA, Silver SpringGoogle Scholar
  71. Gehlen M, Bassinot F, Beck L, Khodja H (2004) Trace element cartography of Globigerinoides ruber shells using particle-induced X-ray emission. Geochem Geophys Geosyst. doi: 10.1029/2004GC000822CrossRefGoogle Scholar
  72. Ghosh P, Adkins J, Affek H, Balta B, Guo W, Schauble EA, Schrag D, Eiler JM (2006) 13C–18O bonds in carbonate minerals: a new kind of paleothermometer. Geochim Cosmochim Acta 70:1439–1456Google Scholar
  73. Groeneveld J, Chiessi CM (2011) Mg/Ca of Globorotalia inflata as a recorder of permanent thermocline temperatures in the South Atlantic. Paleoceanography 26:PA2203. doi: 10.1029/2010PA001940CrossRefGoogle Scholar
  74. Gruber N, Keeling CD, Bates NR (2002) Interannual variability in the North Atlantic Ocean carbon sink. Science 298:2374–2378Google Scholar
  75. Gussone N, Eisenhauer A, Heuser A, Dietzel M, Bock B, Böhm F, Spero HJ, Lea DW, Bijma J, Nägler TF (2003) Model for kinetic effects on calcium isotope fractionation (δ44Ca) in inorganic aragonite and cultured planktonic Foraminifera. Geochim Cosmochim Acta 67:1375–1382. doi: 10.1016/S0016-7037(02)01296-6CrossRefGoogle Scholar
  76. Gussone N, Hönisch B, Heuser A, Eisenhauer A, Spindler M, Hemleben C (2009) A critical evaluation of calcium isotope ratios in tests of planktonic foraminifers. Geochim Cosmochim Acta 73: 7241–7255. doi: 10.1016/j.gca.2009.08.035CrossRefGoogle Scholar
  77. Hamilton CP, Spero HJ, Bijma J, Lea DW (2008) Geochemical investigation of gametogenic calcite addition in the planktonic Foraminifera Orbulina universa. Mar Micropaleontol 68:256–267. doi: 10.1016/j.marmicro.2008.04.003CrossRefGoogle Scholar
  78. Hastings DW, Emerson SR, Erez J, Nelson BK (1996) Vanadium in foraminiferal calcite: Evaluation of a method to determine paleo-seawater vanadium concentrations. Geochim Cosmochim Acta 60:3701–3715Google Scholar
  79. Hastings DW, Russell AD, Emerson SR (1998) foraminiferal magnesium in Globeriginoides sacculifer as a paleotemperature proxy. Paleoceanography 13:161–169Google Scholar
  80. Hayes CT, Martínez-García A, Hasenfratz AP, Jaccard SL, Hodell DA, Sigman DM, Haug GH, Anderson RF (2014) A stagnation event in the deep South Atlantic during the last interglacial period. Science 346:1514–1517. doi: 10.1126/science.1256620CrossRefGoogle Scholar
  81. Hay WW (1985) Potential errors in estimates of carbonate rock accumulating through geologic time. The carbon cycle and atmospheric CO2: natural variations Archean to Present. Geoph Monogr Series 32:573–583Google Scholar
  82. Hemleben C, Bijma J (1994) foraminiferal population dynamics and stable carbon isotopes. In: Zahn R, Kaminski MA, Labeyrie L, Pedersen TF (eds) Carbon cycling in the glacial ocean: Constraints on the ocean's role in global change. NATO ASI Series I 17, pp 145-166Google Scholar
  83. Hemleben C, Bé AWH, Anderson OR, Tuntivate S (1977) Test morphology, organic layers and chamber formation of the planktonic foraminifer Globorotalia menardii (d’Orbigny). J Foraminifer Res 7:1–25Google Scholar
  84. Hemleben C, Spindler M, Anderson OR (1989) Modern planktonic Foraminifera. Springer, BerlinGoogle Scholar
  85. Hemleben C, Meischner D, Zahn R, Almogi-Labin A, Erlenkeuser H, Hiller B (1996) Three hundred eighty thousand year long stable isotope and faunal records from the Red Sea: Influence of global sea level change on hydrography. Paleoceanography 11(2): 147-156. doi: 10.1029/95PA03838CrossRefGoogle Scholar
  86. Hemming NG, Hanson GN (1992) Boron isotopic composition and concentration in modern marine carbonates. Geochim Cosmochim Acta 56:537–543Google Scholar
  87. Henderson GM (2002) New oceanic proxies for paleoclimate. Earth Planet Sci Lett 203:1–13Google Scholar
  88. Henehan MJ, Rae J, Foster GL, Erez J, Prentice KC, Kucera M, Bostock HC, Martinez-Boti MA, Milton JA, Wilson PA, Marshal BJ, Elliott T (2013) Calibration of the boron isotope proxy in the planktonic Foraminifera Globigerinoides ruber for use in palaeo-CO2 reconstruction. Earth Planet Sci Lett 364:111–122Google Scholar
  89. Hillaire-Marcel C, de Vernal A, Polyak L, Darby D (2004) Size-dependent isotopic composition of planktic foraminifers from Chukchi Sea vs. NW Atlantic sediments-implications for the Holocene paleoceanography of the western Arctic. Quat Sci Rev 23:245–260Google Scholar
  90. Hönisch B, Allen KA, Lea DW, Spero HJ, Eggins SM, Arbuszewski J, deMenocal P, Rosenthal Y, Russell AD, Elderfield H (2013) The influence of salinity on Mg/Ca in planktic foraminifers—evidence from cultures, core-top sediments and complementary δ18O. Geochim Cosmochim Acta 121:196–213Google Scholar
  91. Hönisch B, Allen KA, Russell AD, Eggins SM, Bijma J, Spero HJ, Lea DW, Yu J (2011) Planktic foraminifers as recorders of seawater Ba/Ca. Mar Micropaleontol 79:52–57Google Scholar
  92. Hönisch B, Bijma J, Russell AD, Spero HJ, Palmer MR, Zeebe RE, Eisenhauer A (2003) The influence of symbiont photosynthesis on the boron isotopic composition of Foraminifera shells. Mar Micropaleontol 49:87–96Google Scholar
  93. Hönisch B, Hemming NG (2004) Ground-truthing the boron isotope-paleo-pH proxy in planktonic Foraminifera shells: Partial dissolution and shell size effects. Paleoceanography. doi: 10.1029/2004PA001026CrossRefGoogle Scholar
  94. Imbrie J, Hays JD, Martinson DG, McIntyre A, Mix AC, Morley JJ, Pisias NG, Prell WL, Shackleton NJ (1984) The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18O record. In: Berger A (ed) Milankovitch and climate. Part I. Reidel Publishing Company, Dordrecht, p 269Google Scholar
  95. Jonkers L, de Nooijer LJ, Reichart GJ, Zahn R, Brummer GJA (2012) Encrustation and trace element composition of Neogloboquadrina dutertrei assessed from single chamber analyses—implications for paleotemperature estimates. Biogeosciences 9:4851–4860. doi: 10.5194/bg-9-4851-2012CrossRefGoogle Scholar
  96. Jonkers L, Jiménez-Amat P, Mortyn PG, Brummer G-JA (2013) Seasonal Mg/Ca variability of N. pachyderma (s) and G. bulloides: Implications for seawater temperature reconstruction. Earth Planet Sci Lett 376:137–144. doi: 10.1016/j.epsl.2013.06.019CrossRefGoogle Scholar
  97. Katz ME, Cramer BS, Franzese A, Hönisch B, Miller KG, Rosenthal Y, Wright JD (2010) Traditional and emerging geochemical proxies in Foraminifera. J foraminifer Res 40:165–192Google Scholar
  98. Kasemann SA, Schmidt DN, Bijma J, Foster GL (2009) In situ boron isotope analysis in marine carbonates and its application for Foraminifera and palaeo-pH. Chemical Geology 260: 138–147. doi: 10.1016/j.chemgeo.2008.12.015CrossRefGoogle Scholar
  99. Kim ST, O’Neil JR (1997) Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim Cosmochim Acta 61:3461–3475. doi: 10.1016/S0016-7037(97)00169-5CrossRefGoogle Scholar
  100. King K, Hare PE (1972) Amino acid composition of planktonic Foraminifera: a paleobiochemical approach to evolution. Science 175:1461–1463Google Scholar
  101. Kisakürek B, Eisenhauer A, Böhm F, Garbe-Schönberg D, Erez J (2008) Controls on shell Mg/Ca and Sr/Ca in cultured planktonic foraminiferan, Globigerinoides ruber (white). Earth Planet Sci Lett 273:260–269Google Scholar
  102. Kisakürek B, Eisenhauer A, Böhm F, Hathorne EC, Erez J (2011) Controls on calcium isotope fractionation in cultured planktic Foraminifera, Globigerinoides ruber and Globigerinella siphonifera. Geochim Cosmochim Acta 75:427–443. doi: 10.1016/j.gca.2010.10.015CrossRefGoogle Scholar
  103. Köhler-Rink S, Kühl M (2005) The chemical microenvironment of the symbiotic planktonic foraminifer Orbulina universa. Mar Biol Res 1:68–78. doi: 10.1080/17451000510019015CrossRefGoogle Scholar
  104. Kozdon R, Kelly DC, Kita NT, Fournelle JH, Valley JW (2011) Planktonic foraminiferal oxygen isotope analysis by ion microprobe technique suggests warm tropical sea surface temperatures during the Early Paleogene. Paleoceanography. doi: 10.1029/2010PA002056CrossRefGoogle Scholar
  105. Kunioka D, Shirai K, Takahata N, Sano Y, Toyofuku T, Ujiie Y (2006) Microdistribution of Mg/Ca, Sr/Ca, and Ba/Ca ratios in Pulleniatina obliquiloculata test by using a NanoSIMS: implication for the vital effect mechanism. Geochem Geophys Geosystems 7:Q12P20. doi: 10.1029/2006GC001280CrossRefGoogle Scholar
  106. Lea DW (1999) Trance elements in foraminiferal calcite. In: Sen Gupta B (ed) Modern Foraminifera. Kluwer Academic Publishers, Dordrecht, pp 259–277Google Scholar
  107. Lea DW (2003) Elemental and isotopic proxies of past ocean temperatures. In: Holland HD, Turekian KK (eds) Treatise on geochemistry. Elsevier-Pergamon, Oxford, pp 365–390Google Scholar
  108. Lea DW, Bijma J, Spero HJ, Archer D (1999a) Implications of a carbonate ion effect on shell carbon and oxygen isotopes for glacial ocean conditions. In: Fischer G, Wefer G (eds) Use of proxies in paleoceanography: examples from the South Atlantic. Springer, Berlin, Heidelberg, pp 513–522Google Scholar
  109. Lea DW, Martin PA, Chan DA, Spero HJ (1995) Calcium uptake and calcification rate in the planktonic foraminifer Orbulina universa. J foraminifer Res 25:14–23Google Scholar
  110. Lea DW, Mashiotta TA, Spero HJ (1999b) Controls on magnesium and strontium uptake in planktonic Foraminifera determined by live culturing. Geochim Cosmochim Acta 63:2369–2379Google Scholar
  111. Lea DW, Spero HJ (1994) Assessing the reliability of paleochemical tracers: barium uptake in the shells of planktonic Foraminifera. Paleoceanography 9:445–452Google Scholar
  112. Lisiecki LE, Raymo ME (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography. doi: 10.1029/2004PA001071CrossRefGoogle Scholar
  113. Lohbeck KT, Riebesell U, Reusch TBH (2012) Adaptive evolution of a key phytoplankton species to ocean acidification. Nat Geosci 5:346–351. doi: 10.1038/ngeo1441CrossRefGoogle Scholar
  114. Lohmann GP (1995) A model for variation in the chemistry of planktonic Foraminifera due to secondary calcification and selective dissolution. Paleoceanography 10:445–457Google Scholar
  115. Lombard F, Erez J, Michel E, Labeyrie L (2009) Temperature effect on respiration and photosynthesis of the symbiont-bearing planktonic Foraminifera Globigerinoides ruber, Orbulina universa, and Globigerinella siphonifera. Limnol Oceanogr 54:210–218Google Scholar
  116. Marr JP, Baker JA, Carter L, Allan ASR, Dunbar GB, Bostock HC (2011) Ecological and temperature controls on Mg/Ca ratios of Globigerina bulloides from the southwest Pacific Ocean. Paleoceanography 26:PA2209. doi: 10.1029/2010PA002059CrossRefGoogle Scholar
  117. Marr JP, Carter L, Bostock HC, Bolton A, Smith E (2013) Southwest Pacific Ocean response to a warming world: using Mg/Ca, Zn/Ca, and Mn/Ca in Foraminifera to track surface ocean water masses during the last deglaciation. Paleoceanography 28:347–362. doi: 10.1002/palo.20032CrossRefGoogle Scholar
  118. Marshall BJ, Thunell RC, Henehan MJ, Astor Y, Wejnert KE (2013) Planktonic foraminiferal area density as a proxy for carbonate ion concentration: a calibration study using the Cariaco Basin ocean time series. Paleoceanography 28:363–376. doi: 10.1002/palo.20034CrossRefGoogle Scholar
  119. Martínez-Botí MA, Mortyn PG, Schmidt DN, Vance D, Field DB (2011) Mg/Ca in Foraminifera from plankton tows: evaluation of proxy controls and comparison with core tops. Earth Planet Sci Lett 307:113–125. doi: 10.1016/j.epsl.2011.04.019CrossRefGoogle Scholar
  120. Martinson DG, Pisias NG, Hays JD, Imbrie J, Moore TC Jr, Shackleton NJ (1987) Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000-year chronostratigraphy. Quat Res 27:1–29Google Scholar
  121. Mashiotta TA, Lea DW, Spero HJ (1997) Experimental determination of cadmium uptake in shells of the planktonic Foraminifera Orbulina universa and Globigerina bulloides: Implications for surface water paleoreconstructions. Geochim Cosmochim Acta 61:4053–4065. doi: 10.1016/S0016-7037(97)00206-8CrossRefGoogle Scholar
  122. Mathien-Blard E, Bassinot F (2009) Salinity bias on the Foraminifera Mg/Ca thermometry: correction procedure and implications for past ocean hydrographic reconstructions. Geochem Geophys Geosystems 10:Q12011. doi: 10.1029/2008GC002353CrossRefGoogle Scholar
  123. McCorkle DC, Martin PA, Lea DW, Klinkhammer GP (1995) Evidence of a dissolution effect on benthic foraminiferal shell chemistry: δ13C, Cd/Ca, Ba/Ca, and Sr/Ca results from the Ontong Java Plateau. Paleoceanography 10:699–714. doi: 10.1029/95PA01427CrossRefGoogle Scholar
  124. Milliman JD, Troy PJ, Balch WM, Adams AK, Li YH, Mackenzie FT (1999) Biologically mediated dissolution of calcium carbonate above the chemical lysocline? Deep-Sea Res I 46:1653–1669Google Scholar
  125. Misra S, Froelich PN (2009) Measurement of lithium isotope ratios by quadrupole-ICP-MS: application to seawater and natural carbonates. J Anal At Spectrom 24:1524. doi: 10.1039/b907122aCrossRefGoogle Scholar
  126. Mollenhauer G, Kienast M, Lamy F, Meggers H, Schneider RR, Hayes JM, Eglinton TI (2005) An evaluation of 14C age relationships between co-occurring Foraminifera, alkenones, and total organic carbon in continental margin sediments. Paleoceanography. doi: 10.1029/2004PA001103CrossRefGoogle Scholar
  127. Mortyn PG, Charles CD (2003) Planktonic foraminiferal depth habitat and δ18O calibrations: plankton tow results from the Atlantic sector of the Southern Ocean. Paleoceanography 18:1037. doi: 10.1029/2001PA000637CrossRefGoogle Scholar
  128. Moy AD, Howard WR, Bray SG, Trull TW (2009) Reduced calcification in modern Southern Ocean planktonic Foraminifera. Nat Geosci 2:276–280. doi: 10.1038/ngeo460CrossRefGoogle Scholar
  129. Mulitza S, Boltovskoy D, Donner B, Meggers H, Paul A, Wefer G (2003) Temperature: δ18O relationships of planktonic Foraminifera collected from surface waters. Palaeogeogr Palaeoclimatol Palaeoecol 202:143–152Google Scholar
  130. Mulitza S, Dürkoop A, Hale W, Wefer G, Niebler HS (1997) Planktonic Foraminifera as recorders of past surface-water stratification. Geology 25:335–338Google Scholar
  131. Nägler TF, Eisenhauer A, Müller A, Hemleben C, Kramers J (2000) The δ44Ca-temperature calibration on fossil and cultured Globigerinoides sacculifer: new tool for reconstruction of past sea surface temperatures. Geochem Geophy Geosy. doi: 10.1029/2000GC000091CrossRefGoogle Scholar
  132. Niebler HS, Hubberten HW, Gersonde R (1999) Oxygen isotope values of planktic Foraminifera: A tool for the reconstruction of surface water stratification. In: Fischer G, Wefer G (eds) Use of proxies in paleoceanography: examples from the South Atlantic. Springer, Berlin, Heidelberg, pp 165–189Google Scholar
  133. Ni Y, Foster GL, Bailey T, Elliott T, Schmidt DN, Pearson P, Haley B, Coath C (2007) A core top assessment of proxies for the ocean carbonate system in surface-dwelling foraminifers. Paleoceanography. doi: 10.1029/2006PA001337CrossRefGoogle Scholar
  134. Nürnberg D, Bijma J, Hemleben C (1996) Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures. Geochim Cosmochim Acta 60:803–814Google Scholar
  135. Oppo DW, Horowitz M (2010) Glacial deep water geometry: South Atlantic benthic foraminiferal Cd/Ca and δ13C evidence. Paleoceanography 15:147–160Google Scholar
  136. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner G-K, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig M-F, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686. doi: 10.1038/nature04095CrossRefGoogle Scholar
  137. Paris G, Fehrenbacher JS, Sessions AL, Spero HJ, Adkins JF (2014) Experimental determination of carbonate-associated sulfate δ34S in planktonic Foraminifera shells. Geochem Geophys Geosyst 15:1452–1461. doi: 10.1002/2014GC005295CrossRefGoogle Scholar
  138. Parker FL (1958) Eastern Mediterranean Foraminifera, sediment cores from the Mediterranean Sea and Red Sea. Rep Swed Deep-Sea Exped 1947–1948(8):219–285Google Scholar
  139. Peeters FJC, Brummer GJA, Ganssen G (2002) The effect of upwelling on the distribution and stable isotope composition of Globigerina bulloides and Globigerinoides ruber (planktic Foraminifera) in modern surface waters of the NW Arabian Sea. Glob Planet Change 34:269–291. doi: 10.1016/S0921-8181(02)00120-0CrossRefGoogle Scholar
  140. Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of sea-water. In: Hill MN (ed) The Sea, vol 2. Wiley Interscience, New York, pp 26–77Google Scholar
  141. Regenberg M, Nürnberg D, Schönfeld J, Reichart GJ (2007) Early diagenetic overprint in Caribbean sediment cores and its effect on the geochemical composition of planktonic Foraminifera. Biogeosciences 4:957–973Google Scholar
  142. Regenberg M, Nürnberg D, Steph S, Groeneveld J, Garbe-Schönberg D, Tiedemann R, Dullo WC (2006) Assessing the effect of dissolution on planktonic foraminiferal Mg/Ca ratios: evidence from Caribbean core tops. Geochem Geophys Geosyst. doi: 10.1029/2005GC001019CrossRefGoogle Scholar
  143. Regenberg M, Regenberg A, Garbe-Schönberg D, Lea DW (2014) Global dissolution effects on planktonic foraminiferal Mg/Ca ratios controlled by the calcite-saturation state of bottom waters. Paleoceanography 29:127–142. doi: 10.1002/2013PA002492CrossRefGoogle Scholar
  144. Regenberg M, Steph S, Nürnberg D, Tiedemann R, Garbe-Schönberg D (2009) Calibrating Mg/Ca ratios of multiple planktonic foraminiferal species with δ18O-calcification temperatures: paleothermometry for the upper water column. Earth Planet Sci Lett 278:324–336Google Scholar
  145. Ren H, Sigman DM, Meckler AN, Plessen B, Robinson RS, Rosenthal Y, Haug GH (2009) foraminiferal isotope evidence of reduced nitrogen fixation in the ice age Atlantic Ocean. Science 323:244–248. doi: 10.1126/science.1165787CrossRefGoogle Scholar
  146. Ren H, Sigman DM, Thunell RC, Prokopenko MG (2012a) Nitrogen isotopic composition of planktonic Foraminifera from the modern ocean and recent sediments. Limnol Oceanogr 57:1011–1024. doi: 10.4319/lo.2012.57.4.1011CrossRefGoogle Scholar
  147. Ren H, Sigman DM, Thunell RC, Prokopenko MG (2012b) Nitrogen isotopic composition of planktonic Foraminifera from the modern ocean and recent sediments. Limnol Oceanogr 57(4): 1011–1024. doi: 10.4319/lo.2012.57.4.1011CrossRefGoogle Scholar
  148. Richey JN, Poore RZ, Flower BP, Hollander DJ (2012) Ecological controls on the shell geochemistry of pink and white Globigerinoides ruber in the northern Gulf of Mexico: Implications for paleoceanographic reconstruction. Mar Micropaleontol 82–83:28–37. doi: 10.1016/j.marmicro.2011.10.002CrossRefGoogle Scholar
  149. Rickaby REM, Elderfield H (1999) Planktonic foraminiferal Cd/Ca: paleonutrients or paleotemperature? Paleoceanography 14:293–303Google Scholar
  150. Rickaby REM, Greaves MJ, Elderfield H (2000) Cd in planktonic and benthic foraminiferal shells determined by thermal ionisation mass spectrometry. Geochim Cosmochim Acta 64:1229–1236Google Scholar
  151. Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE, Morel FMM (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–367Google Scholar
  152. Rink S, Kühl M, Bijma J, Spero HJ (1998) Microsensor studies of photosynthesis and respiration in the symbiotic foraminifer Orbulina universa. Mar Biol 131:583–595Google Scholar
  153. Ripperger S, Rehkämper M (2007) A highly sensitive MC-ICPMS method for Cd/Ca analyses of foraminiferal tests. J Anal At Spectrom 22:1275–1283Google Scholar
  154. Ripperger S, Schiebel R, Rehkämper M, Halliday AN (2008) Cd/Ca ratios of in situ collected planktonic foraminiferal tests. Paleoceanography. doi: 10.1029/2007PA001524CrossRefGoogle Scholar
  155. Roberts NL, Piotrowski AM, Elderfield H, Eglinton TI, Lomas MW (2012) Rare earth element association with Foraminifera. Geochim Cosmochim Acta 94:57–71. doi: 10.1016/j.gca.2012.07.009CrossRefGoogle Scholar
  156. Rohling EJ, Cooke S (1999) Stable oxygen and carbon isotopes in foraminiferal carbonate shells. In: Sen Gupta BS (ed) Modern Foraminifera. Kluwer Academic Publishers, Dordrecht, pp 239–258Google Scholar
  157. Rosenthal Y, Boyle EA, Slowey N (1997) Temperature control on the incorporation of magnesium, strontium, fluorine, and cadmium into benthic foraminiferal shells from Little Bahama Bank: prospects for thermocline paleoceanography. Geochim Cosmochim Acta 61:3633–3643Google Scholar
  158. Rosenthal Y, Perron-Cashman S, Lear CH, Bard E, Barker S, Billups K, Bryan M, Delaney ML, deMenocal PB, Dwyer GS, Elderfield H, German CR, Greaves M, Lea DW, Marchitto TM, Pak DK, Paradis GL, Russell AD, Schneider RR, Scheiderich K, Stott L, Tachikawa K, Tappa E, Thunell R, Wara M, Weldeab S, Wilson PA (2004) Interlaboratory comparison study of Mg/Ca and Sr/Ca measurements in planktonic Foraminifera for paleoceanographic research. Geochem Geophys Geosyst. doi: 10.1029/2003GC000650CrossRefGoogle Scholar
  159. Russell AD, Emerson S, Nelson BK, Erez J, Lea DW (1994) Uranium in foraminiferal calcite as a recorder of seawater uranium concentrations. Geochim Cosmochim Acta 58:671–681Google Scholar
  160. Russell AD, Hönisch B, Spero HJ, Lea DW (2004) Effects of seawater carbonate ion concentration and temperature on shell U, Mg, and Sr in cultured planktonic Foraminifera. Geochim Cosmochim Acta 68:4347–4361Google Scholar
  161. Russell AD, Spero HJ (2000) Field examination of the oceanic carbonate ion effect on stable isotopes in planktonic Foraminifera. Paleoceanography 15:43–52Google Scholar
  162. Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS l, Wallace DWR, Tilbrook B (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371Google Scholar
  163. Sadekov AY, Eggins SM, Klinkhammer GP, Rosenthal Y (2010) Effects of seafloor and laboratory dissolution on the Mg/Ca composition of Globigerinoides sacculifer and Orbulina universa tests—A laser ablation ICPMS microanalysis perspective. Earth Planet Sci Lett 292:312–324. doi: 10.1016/j.epsl.2010.01.039CrossRefGoogle Scholar
  164. Sanyal A, Hemming NG, Broecker WS, Lea DW, Spero HJ, Hanson GN (1996) Oceanic pH control on the boron isotopic composition of Foraminifera: evidence from culture experiments. Paleoceanography 11:513–517Google Scholar
  165. Sanyal A, Bijma J, Spero HJ, Lea DW (2001) Empirical relationship between pH and the boron isotopic composition of Globigerinoides sacculifer: Implications for the boron isotope paleo-pH proxy. Paleoceanography 16:515–519. doi: 10.1029/2000PA000547CrossRefGoogle Scholar
  166. Sarmiento JL, Gruber N (2006) Ocean biogeochemical dynamics. Princeton University Press, Princeton, OxfordGoogle Scholar
  167. Schiebel R (2002) Planktic foraminiferal sedimentation and the marine calcite budget. Glob Biogeochem Cycles. doi: 10.1029/2001GB001459CrossRefGoogle Scholar
  168. Schiebel R, Barker S, Lendt R, Thomas H, Bollmann J (2007) Planktic foraminiferal dissolution in the twilight zone. Deep-Sea Res II 54:676–686Google Scholar
  169. Schiebel R, Hemleben C (2005) Modern planktic Foraminifera. Paläontol Z 79:135–148Google Scholar
  170. Schiffelbein P, Hills S (1984) Direct assessment of stable isotope variability in planktonic Foraminifera populations. Palaeogeogr Palaeoclimatol Palaeoecol 48:197–213Google Scholar
  171. Schmid TW, Bernasconi SM (2010) An automated method for “clumped-isotope” measurements on small carbonate samples. Rapid Commun Mass Spectrom 24:1955–1963. doi: 10.1002/rcm.4598CrossRefGoogle Scholar
  172. Shackleton NJ (1974) Attainment of isotopic equilibrium between ocean water and the benthonic Foraminifera genus Uvigerina: Isotopic changes in the ocean during the last glacial. Cent Nat Rech Sci Colloq Int 219:203–209Google Scholar
  173. Shackleton NJ, Opdyke ND (1973) Oxygen isotope and palaeomagnetic stratigraphy of Equatorial Pacific core V28-238: oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale. Quat Res 3:39–55Google Scholar
  174. Simstich J, Sarnthein M, Erlenkeuser H (2003) Paired δ18O signals of Neogloboquadrina pachyderma (s) and Turborotalita quinqueloba show thermal stratification structure in Nordic Seas. Mar Micropaleontol 48:107–125Google Scholar
  175. Spero HJ (1992) Do planktic Foraminifera accurately record shifts in the carbon isotopic composition of seawater CO2? Mar Micropaleontol 19:275–285Google Scholar
  176. Spero HJ, Bijma J, Lea DW, Bemis BE (1997) Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature 390:497–500Google Scholar
  177. Spero HJ, DeNiro MJ (1987) The influence of symbiont photosynthesis on the δ18O and δ13C values of planktonic foraminiferal shell calcite. Symbiosis 4:213–228Google Scholar
  178. Spero HJ, Eggins SM, Russell AD, Vetter L, Kilburn MR, Hönisch B (2015) Timing and mechanism for intratest Mg/Ca variability in a living planktic foraminifer. Earth Planet Sci Lett 409:32–42. doi: 10.1016/j.epsl.2014.10.030CrossRefGoogle Scholar
  179. Spero HJ, Lea DW (1996) Experimental determination of stable isotope variability in Globigerina bulloides: implications for paleoceanographic reconstructions. Mar Micropaleontol 28:231–246Google Scholar
  180. Spivack AJ, You CF, Smith HJ (1993) foraminiferal boron isotope ratios as a proxy for surface ocean pH over the past 21 Myr. Nature 363:149–151Google Scholar
  181. Stein M, Almogi-Labin A, Goldstein SL, Hemleben C, Starinsky A (2007) Late quaternary changes in desert dust inputs to the Red Sea and Gulf of Aden from 87Sr/86Sr ratios in deep-sea cores. Earth Planet Sci Lett 261:104–119. doi: 10.1016/j.epsl.2007.06.008CrossRefGoogle Scholar
  182. Tachikawa K, Toyofuku T, Basile-Doelsch I, Delhaye T (2013) Microscale neodymium distribution in sedimentary planktonic foraminiferal tests and associated mineral phases. Geochim Cosmochim Acta 100:11–23. doi: 10.1016/j.gca.2012.10.010CrossRefGoogle Scholar
  183. Ter Kuile BH, Erez J (1991) Carbon budgets for two species of benthonic symbiont-bearing Foraminifera. Biol Bull 180:489–495Google Scholar
  184. Tett P, Droop MR, Heaney SI (1985) The Redfield ratio and phytoplankton growth rate. J Mar Biol Assoc UK 65:487–504Google Scholar
  185. Tripati AK, Eagle RA, Thiagarajan N, Gagnon AC, Bauch H, Halloran PR, Eiler JM (2010) 13C-18O isotope signatures and “clumped isotope” thermometry in Foraminifera and coccoliths. Geochim Cosmochim Acta 74:5697–5717Google Scholar
  186. Uchikawa J, Zeebe RE (2010) Examining possible effects of seawater pH decline on foraminiferal stable isotopes during the Paleocene-Eocene Thermal Maximum. Paleoceanography. doi: 10.1029/2009PA001864CrossRefGoogle Scholar
  187. Uhle ME, Macko SA, Spero HJ, Engel MH, Lea DW (1997) Sources of carbon and nitrogen in modern planktonic Foraminifera: the role of algal symbionts as determined by bulk and compound specific stable isotopic analyses. Org Geochem 27:103–113Google Scholar
  188. Uhle ME, Macko SA, Spero HJ, Lea DW, Ruddiman WF, Engel MH (1999) The fate of nitrogen in the Orbulina universa Foraminifera: Symbiont system determined by nitrogen isotope analyses of shell-bound organic matter. Limnol Oceanogr 44:1968–1977Google Scholar
  189. Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc Resumed 562. doi: 10.1039/jr9470000562
  190. Vance D, Scrivner AE, Beney P, Staubwasser M, Henderson GM, Slowey N (2004) The use of Foraminifera as a record of the past neodymium isotope composition of seawater. Paleoceanography. doi: 10.1029/2003PA000957CrossRefGoogle Scholar
  191. Van Raden UJ, Groeneveld J, Raitzsch M, Kucera M (2011) Mg/Ca in the planktonic Foraminifera Globorotalia inflata and Globigerinoides bulloides from Western Mediterranean plankton tow and core top samples. Mar Micropaleontol 78:101–112. doi: 10.1016/j.marmicro.2010.11.002CrossRefGoogle Scholar
  192. Voelker AHL (2002) Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: A database. Quat Sci Rev 21:1185–1212Google Scholar
  193. Voelker AHL, Grootes PM, Nadeau MJ, Sarnthein M (2000) Radiocarbon levels in the Iceland Sea from 25–53 kyr and their link to the earth’s magnetic field intensity. Radiocarbon 42:437–452Google Scholar
  194. Von Langen PJ, Pak DK, Spero HJ, Lea DW (2005) Effects of temperature on Mg/Ca in neogloboquadrinid shells determined by live culturing. Geochem Geophys Geosystems. doi: 10.1029/2005GC000989CrossRefGoogle Scholar
  195. Wacker U, Fiebig J, Tödter J, Schöne BR, Bahr A, Friedrich O, Tütken T, Gischler E, Joachimski MM (2014) Empirical calibration of the clumped isotope paleothermometer using calcites of various origins. Geochim Cosmochim Acta 141:127–144. doi: 10.1016/j.gca.2014.06.004CrossRefGoogle Scholar
  196. Weldeab S, Lea DW, Schneider RR, Andersen N (2007) 155,000 years of West African monsoon and ocean thermal evolution. Science 316:1303–1307Google Scholar
  197. Weldeab S, Schneider RR, Kölling M (2006) Deglacial sea surface temperature and salinity increase in the western tropical Atlantic in synchrony with high latitude climate instabilities. Earth Planet Sci Lett 241:699–706Google Scholar
  198. Wolf-Gladrow DA, Bijma J, Zeebe RE (1999a) Model simulation of the carbonate chemistry in the microenvironment of symbiont bearing Foraminifera. Mar Chem 64:181–198Google Scholar
  199. Wolf-Gladrow DA, Riebesell U, Burkhardt S, Bijma J (1999b) Direct effects of CO2 concentration on growth and isotopic composition of marine plankton. Tellus Ser B-Chem Phys Meteorol 51:461–476Google Scholar
  200. Zachos JC, Röhl U, Schellenberg SA, Sluijs A, Hodell DA, Kelly DC, Thomas E, Nicolo M, Raffi I, Lourens LJ, McCarren H, Kroon D (2005) Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Science 308:1611–1615. doi: 10.1126/science.1109004CrossRefGoogle Scholar
  201. Zahn R, Keir R (1994) Tracer-nutrient correlations in the upper ocean: Observational and box model constraints on the use of benthic foraminiferal δ13C and Cd/Ca as paleo-proxies for the intermediate-depth ocean. In: Zahn R, Pedersen TF, Kaminski M, Labeyrie L (eds) Carbon cycling in the Glacial Ocean: constraints on the Ocean’s role in global change. NATO ASI Series I, vol 17. Springer, BerlinGoogle Scholar
  202. Zeebe RE (2012) History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification. Annu Rev Earth Planet Sci 40:141–165Google Scholar
  203. Zeebe RE, Bijma J, Wolf-Gladrow DA (1999) A diffusion-reaction model of carbon isotope fractionation in Foraminifera. Mar Chem 64:199–227Google Scholar
  204. Zeebe RE, Sanyal A (2002) Comparison of two potential strategies of planktonic Foraminifera for house building: Mg2+ or H+ removal? Geochim Cosmochim Acta 66:1159–1169Google Scholar
  205. Zeebe RE, Wolf-Gladrow D (2001) CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier, AmsterdamGoogle Scholar
  206. Ziveri P, Thoms S, Probert I, Geisen M, Langer G (2012) A universal carbonate ion effect on stable oxygen isotope ratios in unicellular planktonic calcifying organisms. Biogeosciences 9:1025–1032. doi: 10.5194/bg-9-1025-2012CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

<SimplePara><Emphasis Type="Bold">Open Access</Emphasis> This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. </SimplePara> <SimplePara>The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.</SimplePara>

Authors and Affiliations

  1. 1.Climate GeochemistryMax Planck Institute for ChemistryMainzGermany
  2. 2.Department of GeoscienceUniversity of TübingenBaden-WuerttembergGermany

Personalised recommendations