Advertisement

Sedimentation and Carbon Turnover

Chapter

Abstract

Calcification and dissolution of test CaCO3 cause changes in the surface water carbonate system. Deep-water chemistry affects and is affected by the dissolution of tests (e.g., Berger and Piper in JAMA 17:275–287, 1972; Dittert et al. in Use of proxies in paleoceanography. Springer, Berlin, pp. 255–284, 1999).

References

  1. Almogi-Labin A (1984) Population dynamics of planktic Foraminifera and Pteropoda—Gulf of Aqaba, Red Sea. Proc K Ned Akad Van Wet Ser B Palaeontol Geol Phys Chem 87:481–511Google Scholar
  2. Anderson LA, Sarmiento JL (1994) Redfield ratios of remineralization determined by nutrient data analysis. Glob Biogeochem Cycles 8:65–80. doi: 10.1029/93GB03318CrossRefGoogle Scholar
  3. Archer DE (1996) An atlas of the distribution of calcium carbonate in sediments of the deep sea. Glob Biogeochem Cycles 10:159–174. doi: 10.1029/95GB03016CrossRefGoogle Scholar
  4. Archer D, Maier-Reimer E (1994) Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature 367:260–263. doi: 10.1038/367260a0CrossRefGoogle Scholar
  5. Auras-Schudnagies A, Kroon D, Ganssen G, Hemleben C, van Hinte JE (1989) Distributional pattern of planktonic foraminifers and pteropods in surface waters and top core sediments of the Red Sea, and adjacent areas controlled by the monsoonal regime and other ecological factors. Deep-Sea Res I 36:1515–1533. doi: 10.1016/0198-0149(89)90055-1CrossRefGoogle Scholar
  6. Beckmann W, Auras A, Hemleben C (1987) Cyclonic cold-core eddy in the eastern North Atlantic. III Zooplankton Mar Ecol Prog Ser 39:165–173CrossRefGoogle Scholar
  7. Beer CJ, Schiebel R, Wilson PA (2010) Technical note: on methodologies for determining the size-normalised weight of planktic Foraminifera. Biogeosciences 7:2193–2198. doi: 10.5194/bg-7-2193-2010CrossRefGoogle Scholar
  8. Berelson WM (2002) Particle settling rates increase with depth in the ocean. Deep-Sea Res II 49:237–251. doi: 10.1016/S0967-0645(01)00102-3CrossRefGoogle Scholar
  9. Berelson WM, Balch WM, Najjar R, Feely RA, Sabine C, Lee K (2007) Relating estimates of CaCO3 production, export, and dissolution in the water column to measurements of CaCO3 rain into sediment traps and dissolution on the sea floor: a revised global carbonate budget. Glob Biogeochem Cycles. doi: 10.1029/2006GB002803CrossRefGoogle Scholar
  10. Berger WH (1970) Planktonic Foraminifera: selective solution and the lysocline. Mar Geol 8:111–138. doi: 10.1016/0025-3227(70)90001-0CrossRefGoogle Scholar
  11. Berger WH (1971) Sedimentation of planktonic Foraminifera. Mar Geol 11:325–358. doi: 10.1016/0025-3227(71)90035-1CrossRefGoogle Scholar
  12. Berger WH (1973) Deep-sea carbonates: Pleistocene dissolution cycles. J Foraminifer Res 3:187–195. doi: 10.2113/gsjfr.3.4.187CrossRefGoogle Scholar
  13. Berger WH (1979) Preservation of Foraminifera. In: Lipps JH, Berger WH, Buzas MA, Douglas RG, Ross EH (eds) Foraminiferal ecology and paleoecology: Houston, Texas, Society of Economic Paleontologists and Mineralogists Short Course No 6, pp 105–155CrossRefGoogle Scholar
  14. Berger WH, Piper DJW (1972) Planktonic Foraminifera: differential settling, dissolution, and redeposition. Limnol Oceanogr 17:275–287. doi: 10.4319/lo.1972.17.2.0275CrossRefGoogle Scholar
  15. Berger WH, Wefer G (1990) Export production: seasonality and intermittency, and paleoceanographic implications. Palaeogeogr Palaeoclimatol Palaeoecol 89:245–254. doi: 10.1016/0031-0182(90)90065-FCrossRefGoogle Scholar
  16. Bijma J, Erez J, Hemleben C (1990a) Lunar and semi-lunar reproductive cycles in some spinose planktonic foraminifers. J Foraminifer Res 20:117–127CrossRefGoogle Scholar
  17. Bijma J, Faber WW, Hemleben C (1990b) Temperature and salinity limits for growth and survival of some planktonic foraminifers in laboratory cultures. J Foraminifer Res 20:95–116. doi: 10.2113/gsjfr.20.2.95CrossRefGoogle Scholar
  18. Bijma J, Hemleben C, Wellnitz K (1994) Lunar-influenced carbonate flux of the planktic foraminifer Globigerinoides sacculifer (Brady) from the central Red Sea. Deep-Sea Res I 41:511–530. doi: 10.1016/0967-0637(94)90093-0CrossRefGoogle Scholar
  19. Bishop JKB, Edmond JM, Ketten DR, Bacon MP, Silker WB (1977) The chemistry, biology, and vertical flux of particulate matter from the upper 400 m of the equatorial Atlantic Ocean. Deep-Sea Res 24:511–548. doi: 10.1016/0146-6291(77)90526-4CrossRefGoogle Scholar
  20. Boetius A, Albrecht S, Bakker K, Bienhold C, Felden J, Fernández-Méndez M, Hendricks S, Katlein C, Lalande C, Krumpen T, Nicolaus M, Peeken I, Rabe B, Rogacheva A, Rybakova E, Somavilla R, Wenzhöfer F (2013) Export of algal biomass from the melting Arctic Sea ice. Science 339:1430–1432. doi: 10.1126/science.1231346CrossRefGoogle Scholar
  21. Boltovskoy E, Lena H (1970) On the decomposition of the protoplasm and the sinking velocity of the planktonic foraminifers. Int Rev Gesamten Hydrobiol Hydrogr 55:797–804. doi: 10.1002/iroh.19700550507CrossRefGoogle Scholar
  22. Boussetta S, Bassinot F, Sabbatini A, Caillon N, Nouet J, Kallel N, Rebaubier H, Klinkhammer G, Labeyrie L (2011) Diagenetic Mg-rich calcite in Mediterranean sediments: quantification and impact on foraminiferal Mg/Ca thermometry. Mar Geol 280:195–204. doi: 10.1016/j.margeo.2010.12.011CrossRefGoogle Scholar
  23. Bouvier-Soumagnac Y, Duplessy JC, Bé AWH (1986) Isotopic composition of a laboratory cultured planktonic foraminifer O. universa—implications for paleoclimatic reconstructions. Oceanol Acta 9:519–522Google Scholar
  24. Broecker WS (1971) A kinetic model for the chemical composition of sea water. Quat Res 1:188–207. doi: 10.1016/0033-5894(71)90041-XCrossRefGoogle Scholar
  25. Broecker WS (1987) The biggest chill. Nat Hist 97:74–82Google Scholar
  26. Broecker WS, Clark E (1999) CaCO3 size distribution: a paleocarbonate ion proxy? Paleoceanography 14:596–604. doi: 10.1029/1999PA900016CrossRefGoogle Scholar
  27. Broecker WS, Clark E (2001) An evaluation of Lohmann’s Foraminifera weight dissolution index. Paleoceanography 16:531–534. doi: 10.1029/2000PA000600CrossRefGoogle Scholar
  28. Broecker WS, Clark E (2003) CaCO3 dissolution in the deep sea: paced by insolation cycles. Geochem Geophys Geosystems 4:1059. doi: 10.1029/2002GC000450CrossRefGoogle Scholar
  29. Broecker WS, Peng TH (1982) Tracers in the sea. Eldigio Press, New YorkGoogle Scholar
  30. Brummer GJA, Hemleben C, Spindler M (1987) Ontogeny of extant spinose planktonic Foraminifera (Globigerinidae): a concept exemplified by Globigerinoides sacculifer (Brady) and G. ruber (d’Orbigny). Mar Micropaleontol 12:357–381. doi: 10.1016/0377-8398(87)90028-4CrossRefGoogle Scholar
  31. Buesseler KO, Lamborg CH, Boyd PW, Lam PJ, Trull TW, Bidigare RR, Bishop JKB, Casciotti KL, Dehairs F, Elskens M, Honda M, Karl DM, Siegel DA, Silver MW, Steinberg DK, Valdes J, Mooy BV, Wilson S (2007) Revisiting carbon flux through the ocean’s twilight zone. Science 316:567–570. doi: 10.1126/science.1137959CrossRefGoogle Scholar
  32. Caromel AGM, Schmidt DN, Phillips JC (2013) Repercussions of differential settling on sediment assemblages and multi-proxy palaeo-reconstructions. Biogeosciences Discuss 10:6763–6781. doi: 10.5194/bgd-10-6763-2013CrossRefGoogle Scholar
  33. Caron DA, Roger Anderson O, Lindsey JL, Faber WW, Lin Lim EE (1990) Effects of gametogenesis on test structure and dissolution of some spinose planktonic Foraminifera and implications for test preservation. Mar Micropaleontol 16:93–116CrossRefGoogle Scholar
  34. Conan SMH, Brummer GJA (2000) Fluxes of planktic Foraminifera in response to monsoonal upwelling on the Somalia basin margin. Deep-Sea Res II 47:2207–2227CrossRefGoogle Scholar
  35. Conan SMH, Ivanova EM, Brummer GJA (2002) Quantifying carbonate dissolution and calibration of foraminiferal dissolution indices in the Somali basin. Mar Geol 182:325–349. doi: 10.1016/S0025-3227(01)00238-9CrossRefGoogle Scholar
  36. Constandache M, Yerly F, Spezzaferri S (2013) Internal pore measurements on macroperforate planktonic Foraminifera as an alternative morphometric approach. Swiss J Geosci 106:179–186CrossRefGoogle Scholar
  37. De La Rocha CL, Passow U (2007) Factors influencing the sinking of POC and the efficiency of the biological carbon pump. Deep-Sea Res II 54:639–658. doi: 10.1016/j.dsr2.2007.01.004CrossRefGoogle Scholar
  38. De Villiers S (2005) Foraminiferal shell-weight evidence for sedimentary calcite dissolution above the lysocline. Deep-Sea Res I 52:671–680. doi: 10.1016/j.dsr.2004.11.014CrossRefGoogle Scholar
  39. Deuser WG (1987) Seasonal variations in isotopic composition and deep-water fluxes of the tests of perennially abundant planktonic Foraminifera of the Sargasso Sea: results from sediment-trap collections and their paleoceanographic significance. J Foraminifer Res 17:14–27CrossRefGoogle Scholar
  40. Deuser WG, Ross EH, Hemleben C, Spindler M (1981) Seasonal changes in species composition, numbers, mass, size, and isotopic composition of planktonic Foraminifera settling into the deep Sargasso Sea. Palaeogeogr Palaeoclimatol Palaeoecol 33:103–127CrossRefGoogle Scholar
  41. Dittert N, Henrich R (2000) Carbonate dissolution in the South Atlantic Ocean: evidence from ultrastructure breakdown in Globigerina bulloides. Deep-Sea Res I 47:603–620CrossRefGoogle Scholar
  42. Dittert N, Baumann KH, Bickert T, Henrich R, Huber R, Kinkel H, Meggers H (1999) Carbonate dissolution in the deep-sea: methods, quantification and paleoceanographic application. In: Fischer G, Wefer G (eds) Use of proxies in paleoceanography. Springer, Berlin, pp 255–284CrossRefGoogle Scholar
  43. Ducklow HW, Harris RP (1993) Introduction to the JGOFS North Atlantic bloom experiment. Deep-Sea Res II 40:1–8. doi: 10.1016/0967-0645(93)90003-6CrossRefGoogle Scholar
  44. Dunne JP, Hales B, Toggweiler JR (2012) Global calcite cycling constrained by sediment preservation controls. Glob Biogeochem Cycles 26. doi: 10.1029/2010GB003935
  45. Erez J, Almogi-Labin A, Avraham S (1991) On the life history of planktonic Foraminifera: lunar reproduction cycle in Globigerinoides sacculifer (Brady). Paleoceanography 6:295–306CrossRefGoogle Scholar
  46. Feely RA, Sabine CL, Hernandez-Ayon JM, Ianson D, Hales B (2008) Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320:1490–1492CrossRefGoogle Scholar
  47. Fischer G, Fütterer D, Gersonde R, Honjo S, Ostermann D, Wefer G (1988) Seasonal variability of particle flux in the Weddell Sea and its relation to ice cover. Nature 335:426–428CrossRefGoogle Scholar
  48. Fok-Pun L, Komar PD (1983) Settling velocities of planktonic Foraminifera: density variations and shape effects. J Foraminifer Res 13:60–68CrossRefGoogle Scholar
  49. Frenz M, Baumann KH, Boeckel B, Höppner R, Henrich R (2005) Quantification of foraminifer and coccolith carbonate in South Atlantic surface sediments by means of carbonate grain-size distributions. J Sediment Res 75:464–475CrossRefGoogle Scholar
  50. Friis K, Najjar RG, Follows MJ, Dutkiewicz S (2006) Possible overestimation of shallow-depth calcium carbonate dissolution in the ocean. Glob Biogeochem Cycles. doi: 10.1029/2006GB002727CrossRefGoogle Scholar
  51. Furbish DJ, Arnold AJ (1997) Hydrodynamic strategies in the morphological evolution of spinose planktonic Foraminifera. Geol Soc Am Bull 109:1055–1072. doi: 10.1130/0016-7606(1997)109<1055:HSITME>2.3.CO;2CrossRefGoogle Scholar
  52. Hemleben C, Spindler M, Breitinger I, Deuser WG (1985) Field and laboratory studies on the ontogeny and ecology of some globorotaliid species from the Sargasso Sea off Bermuda. J Foraminifer Res 15:254–272CrossRefGoogle Scholar
  53. Hemleben C, Spindler M, Breitinger I, Ott R (1987) Morphological and physiological responses of Globigerinoides sacculifer (Brady) under varying laboratory conditions. Mar Micropaleontol 12:305–324CrossRefGoogle Scholar
  54. Hemleben C, Spindler M, Anderson OR (1989) Modern planktonic Foraminifera. Springer, BerlinCrossRefGoogle Scholar
  55. Henrich R, Wefer G (1986) Dissolution of biogenic carbonates: effects of skeletal structure. Mar Geol 71:341–362CrossRefGoogle Scholar
  56. Hermelin JOR, Summerhays CP, Prell WS, Emeis KC (1992) Variations in the benthic foraminiferal fauna of the Arabian Sea: a response to changes in upwelling intensity? Upwelling systems: evolution since the early miocene. Geological Society, Special Publications, London, pp 151–166Google Scholar
  57. Hilting AK, Kump LR, Bralower TJ (2008) Variations in the oceanic vertical carbon isotope gradient and their implications for the Paleocene-Eocene biological pump. Paleoceanography. doi: 10.1029/2007PA001458CrossRefGoogle Scholar
  58. Honjo S, Manganini SJ (1993) Annual biogenic particle fluxes to the interior of the North Atlantic Ocean; studied at 34°N 21°W and 48°N 21°W. Deep-Sea Res II 40:587–607CrossRefGoogle Scholar
  59. Huber R, Meggers H, Baumann KH, Henrich R (2000) Recent and Pleistocene carbonate dissolution in sediments of the Norwegian-Greenland Sea. Mar Geol 165:123–136. doi: 10.1016/S0025-3227(99)00138-3CrossRefGoogle Scholar
  60. Intergovernmental Panel on Climate Change (2007) Climate change 2007: synthesis report. Contribution of working groups I, II, and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva SwitzerlandGoogle Scholar
  61. Intergovernmental Panel on Climate Change (ed) (2013) Climate change 2013—The physical science basis: working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  62. Ivanova EV (1988) Late quaternary paleoceanology of the Indian Ocean (based on planktonic foraminifers and pteropods). PP Shirshov Institute of Oceanology USSR Academy of Sciences, Moscow (in Russian)Google Scholar
  63. Ivanova E, Schiebel R, Singh AD, Schmiedl G, Niebler HS, Hemleben C (2003) Primary production in the Arabian Sea during the last 135,000 years. Palaeogeogr Palaeoclimatol Palaeoecol 197:61–82CrossRefGoogle Scholar
  64. Jansen H, Wolf-Gladrow DA (2001) Carbonate dissolution in copepod guts: a numerical model. Mar Ecol Prog Ser 221:199–207CrossRefGoogle Scholar
  65. Jansen H, Zeebe R, Wolf-Gladrow DA (2002) Modelling the dissolution of settling CaCO3 in the ocean. Glob Biogeochem Cycles 16:1–16CrossRefGoogle Scholar
  66. Johnstone HJH, Schulz M, Barker S, Elderfield H (2010) Inside story: an X-ray computed tomography method for assessing dissolution in the tests of planktonic Foraminifera. Mar Micropaleontol 77:58–70. doi: 10.1016/j.marmicro.2010.07.004CrossRefGoogle Scholar
  67. Kawahata H (2002) Suspended and settling particles in the Pacific. Deep-Sea Res II 49:5647–5664. doi: 10.1016/S0967-0645(02)00216-3CrossRefGoogle Scholar
  68. Kemp AES, Pike J, Pearce RB, Lange CB (2000) The “Fall dump”—a new perspective on the role of a “shade flora” in the annual cycle of diatom production and export flux. Deep-Sea Res II 47:2129–2154CrossRefGoogle Scholar
  69. Koeve W (2002) Upper ocean carbon fluxes in the Atlantic Ocean: the importance of the POC:PIC ratio. Glob Biogeochem Cycles. doi: 10.1029/2001GB001836CrossRefGoogle Scholar
  70. Koeve W, Pollehne F, Oschlies A, Zeitzschel B (2002) Storm-induced convective export of organic matter during spring in the northeast Atlantic Ocean. Deep-Sea Res I 49:1431–1444. doi: 10.1016/S0967-0637(02)00022-5CrossRefGoogle Scholar
  71. Kroon D, Ganssen G (1989) Northern Indian Ocean upwelling cells and the stable isotope composition of living planktonic foraminifers. Deep-Sea Res I 36:1219–1236CrossRefGoogle Scholar
  72. Kuhnt T, Howa H, Schmidt S, Marié L, Schiebel R (2013) Flux dynamics of planktic foraminiferal tests in the south-eastern Bay of Biscay (northeast Atlantic margin). J Mar Syst 109–110:169–181. doi: 10.1016/j.jmarsys.2011.11.026CrossRefGoogle Scholar
  73. Lohmann GP (1995) A model for variation in the chemistry of planktonic Foraminifera due to secondary calcification and selective dissolution. Paleoceanography 10:445–457CrossRefGoogle Scholar
  74. Lončarić N, Peeters FJC, Kroon D, Brummer GJA (2006) Oxygen isotope ecology of recent planktic Foraminifera at the central Walvis Ridge (SE Atlantic). Paleoceanography. doi: 10.1029/2005PA001207CrossRefGoogle Scholar
  75. Lončarić N, van Iperen J, Kroon D, Brummer GJA (2007) Seasonal export and sediment preservation of diatomaceous, foraminiferal and organic matter mass fluxes in a trophic gradient across the SE Atlantic. Prog Oceanogr 73:27–59CrossRefGoogle Scholar
  76. Malmgren BA (1983) Ranking of dissolution susceptibility of planktonic Foraminifera at high latitudes of the South Atlantic Ocean. Mar Micropaleontol 8:183–191. doi: 10.1016/0377-8398(83)90023-3CrossRefGoogle Scholar
  77. Millero FJ, Morse J, Chen CT (1979) The carbonate system in the western Mediterranean Sea. Deep-Sea Res I 26:1395–1404CrossRefGoogle Scholar
  78. Milliman JD (1974) Marine carbonates. Springer, New YorkGoogle Scholar
  79. Milliman JD (1993) Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state. Glob Biogeochem Cycles 7:927–957CrossRefGoogle Scholar
  80. Milliman JD, Droxler AW (1996) Neritic and pelagic carbonate sedimentation in the marine environment: ignorance is not bliss. Geol Rundsch 85:496–504CrossRefGoogle Scholar
  81. Milliman JD, Troy PJ, Balch WM, Adams AK, Li YH, Mackenzie FT (1999) Biologically mediated dissolution of calcium carbonate above the chemical lysocline? Deep-Sea Res I 46:1653–1669CrossRefGoogle Scholar
  82. Movellan A (2013) La biomasse des foraminifères planctoniques actuels et son impact sur la pompe biologique de carbone. PhD. Thesis, University of AngersGoogle Scholar
  83. Naidu PD, Malmgren BA (1996) A high-resolution record of late quaternary upwelling along the Oman margin, Arabian Sea based on planktonic Foraminifera. Paleoceanography 11:129–140CrossRefGoogle Scholar
  84. Obata A, Ishizaka J, Endoh M (1996) Global verification of critical depth theory for phytoplankton bloom with climatological in situ temperature and satellite ocean color data. J Geophys Res 101:20657–20667CrossRefGoogle Scholar
  85. Parker FL, Berger WH (1971) Faunal and solution patterns of planktonic Foraminifera in surface sediments of the South Pacific. Deep-Sea Res 18:73–107. doi: 10.1016/0011-7471(71)90017-9CrossRefGoogle Scholar
  86. Paull CK, Hills SJ, Thierstein HR (1988) Progressive dissolution of fine carbonate particles in pelagic sediments. Mar Geol 81:27–40. doi: 10.1016/0025-3227(88)90015-1CrossRefGoogle Scholar
  87. Pearson PN (2012) Oxygen isotopes in Foraminifera: overview and historical review. In: Ivany LC, Huber BT (eds) Reconstructing earth’s deep-time climate—the state of the art in 2012. Paleontological Society Short Course. Paleontological Society Papers, pp 1–38Google Scholar
  88. Pearson PN, Palmer MR (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406:695–699CrossRefGoogle Scholar
  89. Peeters F, Ivanova E, Conan S, Brummer GJA, Ganssen G, Troelstra S, van Hinte J (1999) A size analysis of planktic Foraminifera from the Arabian Sea. Mar Micropaleontol 36:31–63CrossRefGoogle Scholar
  90. Prell WL, Martin A, Cullen JL, Trend M (1999) The Brown University Foraminiferal Data Base (BFD)Google Scholar
  91. Ransom B, Shea KF, Burkett PJ, Bennett RH, Baerwald R (1998) Comparison of pelagic and nepheloid layer marine snow: Implications for carbon cycling. Mar Geol 150:39–50CrossRefGoogle Scholar
  92. Riebesell U, Gattuso JP, Thingstad TF, Middelburg JJ (2013) Arctic ocean acidification: pelagic ecosystem and biogeochemical responses during a mesocosm study. Biogeosciences 10:5619–5626. doi: 10.5194/bg-10-5619-2013CrossRefGoogle Scholar
  93. Rixen T, Haake B, Ittekkot V (2000) Sedimentation in the western Arabian Sea the role of coastal and open-ocean upwelling. Deep-Sea Res II 47:2155–2178CrossRefGoogle Scholar
  94. Salter I, Schiebel R, Ziveri P, Movellan A, Lampitt R, Wolff GA (2014) Carbonate counter pump stimulated by natural iron fertilization in the polar frontal zone. Nat Geosci 7:885–889. doi: 10.1038/ngeo2285CrossRefGoogle Scholar
  95. Sarmiento JL, Gruber N (2006) Ocean biogeochemical dynamics. Princeton University Press, Princeton and OxfordGoogle Scholar
  96. Sautter LR, Thunell RC (1989) Seasonal succession of planktonic Foraminifera: results from a four-year time-series sediment trap experiment in the Northeast Pacific. J Foraminifer Res 19:253–267CrossRefGoogle Scholar
  97. Schiebel R (2002) Planktic foraminiferal sedimentation and the marine calcite budget. Glob Biogeochem Cycles. doi: 10.1029/2001GB001459CrossRefGoogle Scholar
  98. Schiebel R, Hemleben C (2000) Interannual variability of planktic foraminiferal populations and test flux in the eastern North Atlantic Ocean (JGOFS). Deep-Sea Res II 47:1809–1852CrossRefGoogle Scholar
  99. Schiebel R, Hemleben C (2005) Modern planktic Foraminifera. Paläontol Z 79:135–148CrossRefGoogle Scholar
  100. Schiebel R, Movellan A (2012) First-order estimate of the planktic foraminifer biomass in the modern ocean. Earth Syst Sci Data 4:75–89. doi: 10.5194/essd-4-75-2012CrossRefGoogle Scholar
  101. Schiebel R, Hiller B, Hemleben C (1995) Impacts of storms on recent planktic foraminiferal test production and CaCO3 flux in the North Atlantic at 47°N, 20°W (JGOFS). Mar Micropaleontol 26:115–129CrossRefGoogle Scholar
  102. Schiebel R, Bijma J, Hemleben C (1997) Population dynamics of the planktic foraminifer Globigerina bulloides from the eastern North Atlantic. Deep-Sea Res I 44:1701–1713CrossRefGoogle Scholar
  103. Schiebel R, Waniek J, Zeltner A, Alves M (2002) Impact of the Azores front on the distribution of planktic foraminifers, shelled gastropods, and coccolithophorids. Deep-Sea Res II 49:4035–4050CrossRefGoogle Scholar
  104. Schiebel R, Barker S, Lendt R, Thomas H, Bollmann J (2007) Planktic foraminiferal dissolution in the twilight zone. Deep-Sea Res II 54:676–686CrossRefGoogle Scholar
  105. Schmidt K, De La Rocha CL, Gallinari M, Cortese G (2014) Not all calcite ballast is created equal: differing effects of foraminiferan and coccolith calcite on the formation and sinking of aggregates. Biogeosciences 11:135–145. doi: 10.5194/bg-11-135-2014CrossRefGoogle Scholar
  106. Scholten JC, Fietzke J, Vogler S, Rutgers van der Loeff MM, Mangini A, Koeve W, Waniek J, Stoffers P, Antia A, Kuss J (2001) Trapping efficiencies of sediment traps from the deep Eastern North Atlantic: the 230Th calibration. Deep-Sea Res II 48:2383–2408. doi: 10.1016/S0967-0645(00)00176-4CrossRefGoogle Scholar
  107. Sexton PF, Wilson PA, Pearson PN (2006) Microstructural and geochemical perspectives on planktic foraminiferal preservation: “Glassy” versus “Frosty”. Geochem Geophys Geosystems. doi: 10.1029/2006GC001291CrossRefGoogle Scholar
  108. Siegel DA, Deuser WG (1997) Trajectories of sinking particles in the Sargasso Sea: modeling of statistical funnels above deep-ocean sediment traps. Deep-Sea Res I 44:1519–1541CrossRefGoogle Scholar
  109. Simstich J, Sarnthein M, Erlenkeuser H (2003) Paired δ18O signals of Neogloboquadrina pachyderma (s) and Turborotalita quinqueloba show thermal stratification structure in Nordic Seas. Mar Micropaleontol 48:107–125CrossRefGoogle Scholar
  110. Stow DAV, Pudsey CJ, Howe JA, Faugeres JC, Viana AR (2002) Deep-water contourite systems: modern drifts and ancient series, seismic and sedimentary characteristics. In: Geological Society Memoir 22. Geological Society of London, London, p 464Google Scholar
  111. Takahashi K, Bé AWH (1984) Planktonic Foraminifera: factors controlling sinking speeds. Deep-Sea Res Part Oceanogr Res Pap 31:1477–1500CrossRefGoogle Scholar
  112. Thiel H, Pfannkuche O, Schriever G, Lochte K, Gooday AJ, Hemleben C, Mantoura RFG, Turley CM, Patching JW, Riemann F (1989) Phytodetritus on the deep-sea floor in a central oceanic region of the Northeast Atlantic. Biol Oceanogr 6:203–239. doi: 10.1080/01965581.1988.10749527CrossRefGoogle Scholar
  113. Thunell RC, Honjo S (1987) Seasonal and interannual changes in planktonic foraminiferal production in the North Pacific. Nature 328:335–337CrossRefGoogle Scholar
  114. Turley CM, Stutt ED (2000) Depth-related cell-specific bacterial leucine incorporation rates on particles and its biogeochemical significance in the Northwest Mediterranean. Limnol Oceanogr 45:419–425CrossRefGoogle Scholar
  115. Van Aken HM (2000) The hydrography of the mid-latitude Northeast Atlantic Ocean: II: the intermediate water masses. Deep-Sea Res I 47:789–824CrossRefGoogle Scholar
  116. Van Raden UJ, Groeneveld J, Raitzsch M, Kucera M (2011) Mg/Ca in the planktonic Foraminifera Globorotalia inflata and Globigerinoides bulloides from Western Mediterranean plankton tow and core top samples. Mar Micropaleontol 78:101–112. doi: 10.1016/j.marmicro.2010.11.002CrossRefGoogle Scholar
  117. Van Sebille E, Scussolini P, Durgadoo JV, Peeters FJC, Biastoch A, Weijer W, Turney C, Paris CB, Zahn R (2015) Ocean currents generate large footprints in marine palaeoclimate proxies. Nat Commun 6:6521. doi: 10.1038/ncomms7521CrossRefGoogle Scholar
  118. Vincent E, Berger WH (1981) Planktonic Foraminifera and their use in paleoceanography. Ocean Lithosphere Sea 7:1025–1119Google Scholar
  119. Volbers ANA, Henrich R (2002) Present water mass calcium carbonate corrosiveness in the eastern South Atlantic inferred from ultrastructural breakdown of Globigerina bulloides in surface sediments. Mar Geol 186:471–486. doi: 10.1016/S0025-3227(02)00333-XCrossRefGoogle Scholar
  120. Von Gyldenfeldt AB, Carstens J, Meincke J (2000) Estimation of the catchment area of a sediment trap by means of current meters and foraminiferal tests. Deep-Sea Res II 47:1701–1717CrossRefGoogle Scholar
  121. Wefer G (1989) Particle flux in the ocean: effects of episodic production. In: Berger WH, Smetacek VS, Weger G (eds) Productivity of the ocean: present and past. Dahlem Workshop Proceedings, pp 139–154Google Scholar
  122. Wejnert KE, Pride CJ, Thunell RC (2010) The oxygen isotope composition of planktonic Foraminifera from the Guaymas Basin, Gulf of California: seasonal, annual, and interspecies variability. Mar Micropaleontol 74:29–37CrossRefGoogle Scholar
  123. Weyl PK (1978) Micropaleontology and ocean surface climate. Science 202:475–481CrossRefGoogle Scholar
  124. Žarić S, Schulz M, Mulitza S (2006) Global prediction of planktic foraminiferal fluxes from hydrographic and productivity data. Biogeosciences 3:187–207CrossRefGoogle Scholar
  125. Zeebe RE (2012) History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification. Annu Rev Earth Planet Sci 40:141–165CrossRefGoogle Scholar
  126. Zeebe RE, Wolf-Gladrow D (2001) CO2 in Seawater: equilibrium, Kinetics. Isotopes, Elsevier, AmsterdamGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

<SimplePara><Emphasis Type="Bold">Open Access</Emphasis> This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. </SimplePara> <SimplePara>The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.</SimplePara>

Authors and Affiliations

  1. 1.Climate GeochemistryMax Planck Institute for ChemistryMainzGermany
  2. 2.Department of GeoscienceUniversity of TübingenBaden-WuerttembergGermany

Personalised recommendations