Advertisement

Ökophysiologie der Agrargehölze – vom Blatt zum Bestand

  • Maik VesteEmail author
  • Candy Pflugmacher
  • Holger Hartmann
  • Rainer Schlepphorst
  • Dieter Murach
Chapter

Zusammenfassung

Auf wechselnde Umweltbedingungen an ihren Wuchsstandorten müssen Bäume mit ihrer ökophysiologischen und morphologischen Anpassungsfähigkeit reagieren, die sich auf deren genetische Ausstattung gründet. Sowohl die Bodeneigenschaften als auch das Klima beeinflussen die physiologischen Prozesse von der Blatt- bis zur Baumebene. Grundlage für das schnelle Wachstum und die hohe Biomasseproduktivität der Agrargehölze ist die Photosynthese und die hohe Anpassungsfähigkeit an sich ändernde Umweltbedingungen. Dabei ist zu bedenken, dass die Photosynthese die Voraussetzung für das Wachstum ist, aber diese nicht das Wachstum antreibt. Interaktionen zwischen dem Bedarf an Assimilation für die Wachstumsprozesse („sinks“) und dem Angebot („source“) steuern den Kohlenstoffhaushalt der Pflanzen. Zudem ist das Angebot von Ressourcen (Wasser, Nährstoffe, Licht) eine unverzichtbare Voraussetzung für die Wachstumsprozesse. Das Kapitel gibt einen Überblick über die ökophysiologischen Anpassungen der Photosynthese, des Wasserhaushaltes und der Pflanzenernährung der schnellwachsenden Baumarten und deren Bedeutung für das Wachstum und die Kohlenstoffallokation. Zudem werden die Grundlagen für die Modellierung der Biomasseproduktion und des Kohlenstoffhaushaltes vom Blatt bis zum Bestand vorgestellt.

Literatur

  1. Al Afas N, Marron N, Zavalloni C, Ceulemans R (2008) Growth and production of a short-rotation coppice culture of poplar – IV: Fine root characteristics of five poplar clones. Biomass Bioenergy 32:494–502Google Scholar
  2. Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–371PubMedGoogle Scholar
  3. Ali W (2009) Modelling of Biomass Production Potential of Poplar in Short Rotation on Agricultural Lands of Saxony, Germany. Dissertation, Fachrichtung Forstwissenschaften, TU Dresden, TharandtGoogle Scholar
  4. Amthauer Gallardo D (2014) Standortbasierte Ertragsmodellierung von Pappel- und Weidenklonen in Kurzumtriebsplantagen. Dissertation, Fachrichtung Forstwissenschaften, TU DresdenGoogle Scholar
  5. Anders S, Beck W, Lux W, Müller J, Fischer R, König A, Küppers J-G, Thoroe C, Kätzel R, Löffer S, Heydeck P, Möller K (2004) Auswirkung der Trockenheit 2003 auf Waldzustand und Waldbau. Bundesforschungsanstalt für Forst- und Holzwirtschaft. Arbeitsbericht des Instituts für Waldökologie und Walderfassung Nr. 2/2004, S 1–109Google Scholar
  6. Atkinson D (2000) Root characteristics: why and what to measure. In: Smit AL, Bengough AG, Engels C, Van Nordwijk M, Pellerin S, Van de Gijn C (Hrsg) Root Methods. A Handbook. Springer, Heidelberg, S 1–32Google Scholar
  7. Bago B, Pfeffer PE, Abubaker J, Jun J, Allen JW, Brouillette J, Douds DD, Lammers PJ, Shachar-Hill Y (2003) Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid. Plant Physiol 131:1496–1507PubMedPubMedCentralGoogle Scholar
  8. Balasus A (2014) Umwelt- und Ertragswirkungen der Stickstoffdüngung beim Anbau von Weiden und Pappeln auf Ackerflächen unter Berücksichtigung phytopathologischer Aspekte. Dissertation, Fakultät für Umweltwissenschaften, TU DresdenGoogle Scholar
  9. Balasus A, Bischoff W-A, Schwarz A, Scholz V, Kern J (2012) Nitrogen fluxes during the initial stage of willows and poplars in short-rotation coppices. J Plant Nutr Soil Sci 175:729–738Google Scholar
  10. Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins J, Nijhoff M (Hrsg) Progress in Photosynthesis Research 4. Nijhoff, Dordrecht, S 221–224Google Scholar
  11. Barnéoud C, Bonduelle P, Dubois JM (1982) Manuel de Populiculture. Association Font-Cellulose, Paris, 319 SGoogle Scholar
  12. Batzli JM, Graves WR, Van Berkum P (1992) Diversity among Rhizobium effective with Robinia pseudoacacia L. Appl Environ Microbiol 58(7):2137–2143Google Scholar
  13. Baule H (1967) Die Düngung von Waldbäumen. Bayrischer Landwirtschaftsverlag, MünchenGoogle Scholar
  14. Baum C, Makeschin F (2000) Effects of nitrogen and phosphorus fertilization on mycorrhizal formation of two poplar clones (Populus trichocarpa and P. tremula x tremuloides). J Plant Nutr Soil Sci 163:491–497Google Scholar
  15. Baum C, Schmid K, Makeschin F (2000) Interactive effects of substrates and ectomycorrhizal colonization on growth of a poplar clone. J Plant Nutr Soil Sci 163:221–226Google Scholar
  16. Beaupied H, Moiroud A, Domenach A-M, Kurdali F, Lensi R (2011) Ratio of fixed and assimilated nitrogen in a black alder (Alnus glutionsa) stand. Can J For Res 20(7):1116–1119Google Scholar
  17. Beesk M (2015) Untersuchungen zum Wasser-, Nährstoffhaushalt und zum Wachstum von Robinien in Agroforstsystemen in der Niederlausitz. Masterarbeit, Brandenburg University of Technology Cottbus-SenftenbergGoogle Scholar
  18. Begley D, McCracken AR, Dawson WM, Watson S (2009) Interaction in Short Rotation Coppice willow, Salix viminalis genotype mixtures. Biomass Bioenergy 33:163–173Google Scholar
  19. Berhongaray G, Verlinden MS, Broeckx LS, Ceulemans R (2015) Changes in belowground biomass after coppice in two Populus genotypes. For Ecol Manage 337:1–10Google Scholar
  20. Bloom AJ, Chapin FS, Mooney HA (1985) Resource limitation in plants – an economic analogy. Annu Rev Ecol Syst 16:363–392Google Scholar
  21. Boddey RM, Peoples MB, Palmer B, Dart PJ (2000) Use of the 15N natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutr Cycl Agroecosys 57:235–270Google Scholar
  22. Böhm C, Quinkenstein A, Freese D (2011) Yield prediction of young black locust (Robinia pseudoacacia L.) plantations for woody biomass production using allometric relations. Ann For Res 54:215–227Google Scholar
  23. Bonosi L, Ghelardini L, Weih M (2013) Towards making willows potential bio-resources in the South: Northern Salix hybrids can cope with warm and dry climate when irrigated. Biomass Bioenergy 51:136–144Google Scholar
  24. Boring LR, Swank WT (1984) Symbiotic nitrogen fixation in regenerating black locust (Robinia pseudoacacia L.) stands. For Sci 30(2):528–537Google Scholar
  25. Bormann BT, Bormann FH, Bowden WB, Pierce RS, Hamburg SP, Wang D, Snyder MC, Li CY, Ingersoll RC (1993) Rapid N2 fixation in pines, alder and locust: evidence from the sandbox ecosystem study. Evology 74:583–598Google Scholar
  26. Bouman O, Sylliboy J (2012) Biomass allocation and photosynthetic capacity of willow (Salix spp.) bio-energy varieties. Forstarchiv 83:139–143Google Scholar
  27. Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37PubMedPubMedCentralGoogle Scholar
  28. Bräuning A, Bolte A, Nabais C, Rossi S, Sass-Klaasen U (2017) Studying tree responses to extreme events. Front Plant Sci.  https://doi.org/10.3389/fpls.2017.00506CrossRefPubMedPubMedCentralGoogle Scholar
  29. Broeckx LS, Fichot R, Verlinden MS, Ceulemans R (2014) Seasonal variations in photosynthesis, intrinsic water-use efficiency and stable isotope composition of poplar leaves in a short-rotation plantation. Tree Physiol 34:701–715PubMedPubMedCentralGoogle Scholar
  30. Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soils 320:37–77Google Scholar
  31. Bullard MJ, Mustill SJ, Carver P, Nixon PMI (2002) Yield improvements through modification of planting density and harvest frequency in short rotation coppice Salix spp. 2. Resource capture and use in two morphologically diverse varieties. Biomass Bioenergy 22:27–39Google Scholar
  32. Bungart R, Hüttl RF (2004) Growth dynamics and biomass accumulation of 8-year-old hybrid poplar clones in a short-rotation plantation on a clayey-sandy mining substrate with respect to plant nutrition and water budget. Eur J Res 123:105–115Google Scholar
  33. Cannell MGR, Dewar RC (1994) Carbon allocation in trees – a review of concepts for modelling. Adv Ecol Res 25:59–104Google Scholar
  34. Carl C, Biber P, Landgraf D, Buras A, Pretzsch H (2017) Allometric models to predict abovegound woody biomass of black locust (Robinia pseudoacacia L.) in short rotation coppice in previous mining and agricultural areas in Germany. Forests 8(9):328.  https://doi.org/10.3390/f8090328CrossRefGoogle Scholar
  35. Carl C, Biber P, Veste M, Landgraf D, Pretzsch H (2018) Key drivers of competition and growth partitioning among Robinia pseudoacacia L. Trees For Ecol Manag 430:86–93Google Scholar
  36. Ceulemans R, Isebrands JG (1996) Carbon acquisition and allocation. In: Stettler R, Bradshaw T, Heilman P, Hinckley T (Hrsg) Biology of Populus and its implications for management and conservation. NRC Research Press, National Research Council of Canada, Ottawa, S 355–399Google Scholar
  37. Comas LH, Eissenstat DM (2004) Linking fine root traits to maximum potential growth rate among 11 mature temperate tree species. Funct Ecol 18:388–397Google Scholar
  38. Comas LH, Bouma TJ, Eissenstat DM (2002) Linking root traits to potential growth rate in six temperate tree species. Oecologia 132:34–43PubMedGoogle Scholar
  39. Crow P, Houston TJ (2004) The influence of soil and coppice cycle on the rooting habit of short rotation poplar and willow coppice. Biomass Bioenergy 26:497–505Google Scholar
  40. Cunniff J, Purdy SJ, Barraclough TJP, Castle M, Maddison AL, Jones LE, Shield IF, Gregory AS, Karp A (2015) High yielding biomass genotypes of willow (Salix spp.) show differences in below ground biomass allocation. Biomass Bioenergy 80:114–127PubMedPubMedCentralGoogle Scholar
  41. Côté B, Camiré C (1987) Tree growth and nutrient cycling in dense plantings of hybrid poplar and black alder. Can J For Res 17:516–523Google Scholar
  42. Danso SK, Zapata F, Awonaike KO (1995) Measurement of biological N2 fixation in field-grown Robinia pseudoacacia. Soil Biol Biochem 25:415–419Google Scholar
  43. Dawson WM, McCracken AR (1995) The performance of polyclonal stands in short rotation coppice willow for energy production. Biomass Bioenergy 8:1–5Google Scholar
  44. Dickmann DI, Pregitzer KS (1992) The structure and dynamics of woody plant systems. In: Mitchell CP, Ford JB, Hinckley T, Sennerby-Forsse L (Hrsg) Ecophysiology of short rotation forest crops. Elsevier, London, S 95–123Google Scholar
  45. Dickson RE (1986) Carbon fixation and distribution in you Populus trees. In: Fujimori T, Withehead D (Hrsg) Proceedings: crown and canopy in relation to productivity. Forest Products Research Institute, IbarakiGoogle Scholar
  46. Dimitriou I, Mola-Yudego B (2017) Nitrogen fertilization of poplar plantations on agricultural land: effects on diameter increments and leaching. Scand J For Res 32:700–707Google Scholar
  47. Dimitriou I, Busch G, Jacobs S, Schmidt-Walther P, Lamersdorf N (2009) A review of impacts of short rotation coppice cultivation on water issues. Lanbauforsch – Vti Agric Forstery Res 3(59):162–197Google Scholar
  48. Dittert K (1992) Die stickstofffixierende Schwarz-Erle-Frankia-Symbiose in einem Erlenbruchwald der Bornhöver Seenkette. Ecosys Suppl 5:1–98Google Scholar
  49. Dobson MC, Moffat AJ (1999) Examination of tree and root performance on closed landfills in Merseyside. Arboric J 23:261–272Google Scholar
  50. Doty SL, Dosher MR, Singleton GL, Moore AL, Van Aken B, Stettler RF, Strand SE, Gordon MP (2005) Identification of an endophytic Rhizobium in stems of Populus. Symbiosis 39:27–35Google Scholar
  51. Doty SL, Oakley B, Xin G, Kang JW, Singleton G, Khan Z, Vajzovic A, Staley JT (2009) Diazotrophic endophytes of native black cottonwood and willow. Symbiosis 47:23–33Google Scholar
  52. Erice G, Sanz-Sáez A, Aroca R, Ruíz-Lozano JM, Avice J-C, Irigoyen J, Sanchez-Diaz M, Aranjuelo I (2014) Photosynthetic down-regulation in N2-fixing alfalfa under elevated CO2 alters rubisco content and decreases nodule metabolism via nitrogenase and tricarboxylic acid cycle. Acta Physiol Plantarum 36:2607–2617Google Scholar
  53. Eshel A, Beeckman T (2013) Plant roots: the hidden half, 4. Aufl. CRC Press, Boca Raton, S 784Google Scholar
  54. Euring D, Ayegbeni S, Jansen M, Tu J, Da Silv CG, Polle A (2016) Growth performance and nitrogen use efficiency of two Populus hybrid clones (P. nigra × P. maximowiczii and P. trichocarpa × P. maximowiczii) in relation to soil depth in a young plantation. Iforest – J Biogeosciences For 9:847–854Google Scholar
  55. Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologica 78:9–19Google Scholar
  56. Evans S, Randle T, Henshall P, Arcangeli C, Pellenq J, Lafont S, Vials C (2005a) Recent advances in the mechanistic modelling of forest stand and catchments. In: Forest Research Annual Report and Accounts 2003–2004 The Stationery Office, Edinburgh. UK, S 98–111 (https://www.forestry.gov.uk/pdf/fr_report2003_4_modelling.pdf/$FILE/fr_report2003_4_modelling.pdf)Google Scholar
  57. Evans S, Randle T, Henshall P et al (2005b) The MEFYQUE stand model – ForestGrowth, with the ETp engine. In: Randle T (Hrsg) Final Report: Forest and Timber Quality in Europe: Modelling and Forecasting Yield and Quality in Europe (http://www.efi.int/files/attachments/research/project_db/mefyque_finalpublication_mainv2.pdf)Google Scholar
  58. Evans SP, May TR, Hollis JM, Brown CD (1999) SWBCM: a soil water balance capacity model for environmental applications in the UK. Ecol Model 121:17–49Google Scholar
  59. Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90PubMedGoogle Scholar
  60. Farrar K, Bryant D, Cope-Selby N (2014) Understanding and engineering beneficial plant-microbe interactions: plant growth promotion in energy crops. Plant Biotechnol J 12(9):1193–1206PubMedPubMedCentralGoogle Scholar
  61. Fillion M, Brisson J, Guidi W, Labrecque M (2011) Increasing phosphorus removal in willow and poplar vegetation filters using arbuscular mycorrhizal fungi. Ecol Eng 37:199–205Google Scholar
  62. Foltyn D (2015) Allometrische Beziehungen bei schnell-wachsenden Baumarten in Kurzumtriebsplantagen zur Bestimmung ihrer Gesamtbiomasse und der daraus resultierenden Kohlenstoffsequestrierung. Bachelorarbeit, Hochschule für nachhaltige Entwicklung EberswaldeGoogle Scholar
  63. Franche C, Lindström K, Elmrich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soils 321:35–59Google Scholar
  64. Fränzle O, Schimming C-G (2008) Element fluxes in atmosphere, vegetation and soil. In: Fränzle O, Kappen L, Blume H-P, Dierssen K (Hrsg) Ecosystem organization of a complex landscape. Ecological studies 202. Springer, Heidelberg, Berlin, New York, S 169–205Google Scholar
  65. Friend AL, Scarascia-Mugnozza G, Isebrands JG, Heilman PE (1991) Quantification of two year old poplar root systems – morphology, biomass, and 14C distribution. Tree Physiol 8:109–119PubMedGoogle Scholar
  66. Gálvez L, González EM, Arrese-Igor C (2005) Evidence for carbon flux shortage and strong carbon/nitrogen interactions in pea nodules at early stages of water stress. J Exp Bot 56:2551–2561PubMedGoogle Scholar
  67. Gentili F, Huss-Danell K (2003) Local and systemic effects of phosphorus and nitrogen on nodulation and nodule function in Alnus incana. J Exp Bot 54:2757–2767PubMedGoogle Scholar
  68. Gentili F, Wall LG, Huss-Danell K (2006) Effects of phosphorus and nitrogen on nodulation are seen already at the stage of early cortical cell divisions in Alnus incana. Ann Bot 98(2):309–315PubMedPubMedCentralGoogle Scholar
  69. Geßler A, Keitel C, Kreuzwieser J, Matyssek R, Seiler W, Rennenberg H (2007) Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees 21:1–11Google Scholar
  70. Godbold D, Tullus A, Kupper P, Sober J, Ostonen I, Godbold JA, Lukac M, Ahmed IA, Smith AR (2014) Elevated atmospheric CO2 and humidity delay leaf fall in Betula pendula, but not in Alnus glutinosa or Populus tremula × tremuloides. Ann For Sci 71:831–842Google Scholar
  71. Graves AR, Burgess PJ, Palma JHN, Keesman KJ, van der Werf W, Dupraz C, van Keulen H, Herzog F, Mayus M (2010) Implementation and calibration of the parameter-sparse Yield-SAFE model to predict production and land equivalent ratio in mixed tree and crop systems under two contrasting production situations in Europe. Ecol Model 221:1744–1756Google Scholar
  72. Gray SB, Strellner RS, Puthuval KK, Ng C, Shulman RE, Siebers MH, Rogers A, Leakey ADB (2013) Minirhizotron imaging reveals that nodulation of field grown soybean is enhanced by free-air CO2 enrichment only when combined with drought stress. Funct Plant Biol 40(2):137–147Google Scholar
  73. Green DS, Kruger EL, Stanosz GR, Isebrands JG (2001) Light-use efficiency of native and hybrid poplar genotypes at high levels of intracanopy competition. Can J For Res 31:1030–1037Google Scholar
  74. Guse T, Schneck V, von Wühlisch G, Liesebach M (2015) Untersuchungen der Ertragsleistung und -stabilität bei Robinien-Jungpflanzen verschiedener Herkunft auf einem Standort im Land Brandenburg. In: Liesebach M (Hrsg) FastWOOD II: Züchtung schnellwachsender Baumarten für die Produktion von nachwachsender Rohstoffe im Kurzumtrieb – Erkenntnisse aus 6 Jahren FastWOOD. Thünen Report 26, S 85–97Google Scholar
  75. Gutsch M, Lasch-Born P, Lüttger AB, Suckow F, Murawski A, Pilz T (2015) Uncertainty of biomass contributions from agriculture and forestry to renewable energy resources under climate change. Meteorol Z 24:213–223Google Scholar
  76. Hallgren SW (1989) Growth-response of Populus hybrids to flooding. Ann Sci For 46:361–372Google Scholar
  77. Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320PubMedPubMedCentralGoogle Scholar
  78. Harley PC, Sharkey TD (1991) An improved model of C3 photosynthesis at high CO2: reversed O2 sensitivity explained by lack of glycerate reentry into the chloroplast. Photosyn Res 27:169–178PubMedGoogle Scholar
  79. Hartmann K-U (2010) Entwicklung eines Ertragsschätzers für Kurzumtriebsbestände aus Pappel. Dissertation, Fachrichtung Forstwissenschaften, TU DresdenGoogle Scholar
  80. Hartwich J, Bölscher J, Schulte A, Schmidt M, Pflugmacher C, Murach D (2015) Das Transpirationswasserdargebot als steuernder Faktor für die Produktion von Energie aus Weiden in Kurzumtriebsplantagen – Abschätzung des Bioenergiepotenzials für Deutschland. Hydrol Wasserbewirtsch 59:217–226Google Scholar
  81. Heilman PE, Ekuan G, Fogle DB (1994) First-order root development from cuttings of Populus trichocarpa × P. deltoides hybrids. Tree Physiol 14:911–920PubMedGoogle Scholar
  82. Heilman PE, Hinckley TM, Roberts DA, Ceulemans R (1996) Production physiology. In: Stettler R, Bradshaw T, Heilman P, Hinckley T (Hrsg) Biology of Populus and its implications for management and conservation. NRC Research Press, National Research Council of Canada, Ottawa, S 459–489Google Scholar
  83. Heskel MA, Atkin OK, Turnbull MH, Griffin KL (2013) Bringing the Kok effect to light: a review on the integration of daytime respiration and net ecosystem exchange. Ecosphere 4(8):1–14Google Scholar
  84. Hikosaka K, Niinemets U, Anten NPR (2016) Canopy photosynthesis: from basics to applications. Advances in photosynthesis and respiration. Springer, DordrechtGoogle Scholar
  85. Hoeber S, Fransson P, Prieto-Ruiz I, Manzoni S, Weih M (2017) Two Salix genotypes differ in productivity and nitrogen economy when grown in monoculture and mixture. Front Plant Sci.  https://doi.org/10.3389/fpls.2017.00231CrossRefPubMedPubMedCentralGoogle Scholar
  86. Högberg P (1997) Tansley Review No. 95. 15N natural abundance in soil-plant systems. New Phytol 137:179–203Google Scholar
  87. Hong SJ, Song SD (1990) Symbiontic nitrogen fixation activity and environmental factors of Robinia pseudoacacia L. Kor J Ecol 13:93–100Google Scholar
  88. Isebrands JG, Nelson ND, Dickmann DI, Michael DA (1983) Yield physiology of short-rotation intensively cultured poplars. Usda Srv Gen Tech Rep Nc 91:77–93Google Scholar
  89. Johnsen KH, Bongarten BC (1991) Allometry of acetylene reduction and nodule growth of Robinia pseudoacacia families subjected to varied root zone nitrate concentrations. Tree Physiol 9:507–522PubMedGoogle Scholar
  90. Johnsen KH, Bongarten BC (1992) Relationships between nitrogen fixation and growth in Robinia pseudoacacia seedlings: a functional growth-analysis approach using 15N. Physiol Plant 85:77–84Google Scholar
  91. Kanzler M, Böhm C, Freese D (2015) Impact of P fertilisation on the growth performance of black locust (Robinia pseudoacacia L.) in a lignite post-mining area in Germany. Ann For Res 58:39–54Google Scholar
  92. Karacic A, Verwijst T, Weih M (2003) Above-ground woody biomass production of short-rotation Populus plantations on agricultrual land in Sweden. Scand J For Res 18:427–437Google Scholar
  93. Kitao M, Lei TT, Koike T, Tobita H, Maruyama Y (2003) Higher electron transport rate observed at low intercellular CO2 concentration in long-term drought-acclimated leaves of Japanese mountain birch (Betula ermanii). Physiol Plant 118:406–413Google Scholar
  94. Knoth JL, Kim S-H, Ettl G, Doty SL (2013) Biological nitrogen fixation and biomass accumulation within poplar clones as a result of inoculations with diazotrophic endophyte consortia. New Phytol 201:599–609PubMedGoogle Scholar
  95. Koike T (1987) Photosynthesis and expansion in leaves of early, mid and late successional tree species, birch, ash and maple. Photosynthetica 21:503–508Google Scholar
  96. Koning LA, Veste M, Freese D, Lebzien S (2015) Effects of nitrogen and phosphate fertilization on leaf nutrient content, photosynthesis, and growth of the novel bioenergy crop Fallopia sachalinensis cv. ‘Igniscum Candy’. Journal of Applied Botany and Food Quality 88:22–28Google Scholar
  97. Kostiiainen K, Saranpää P, Lundquist S-O, Kubiske ME, Vapaavuori E (2014) Wood properties of Populus and Betula in long-term exposure to elevated CO2 and O3. Plant Cell Environ 37:1452–1463Google Scholar
  98. Kriebitzsch WU, Veste M (2012) Bedeutung trockener Sommer für die Photosynthese und Transpiration von verschiedenen Herkünften der Rotbuche (Fagus sylvatica L.). Landbauforschung 62(4):193–209Google Scholar
  99. Kriebitzsch WU, Beck W, Schmitt U, Veste M (2008) Bedeutung trockener Sommer für Wachstumsfaktoren von verschiedenen Herkünften der Rotbuche (Fagus sylvatica L). AFZ-der Wald 5/2008:246–248Google Scholar
  100. Küppers M (1984) Kohlenstoffhaushalt, Wasserhaushalt, Wachstum und Wuchsform von Holzgewächsen im Konkurrenzgefüge eines Heckenstandortes. In: Schulze E-D, Reif A, Küppers M (Hrsg) Die pflanzenökologische Bedeutung und Bewertung von Hecken. Akademie für Naturschutz und Landschaftspflege. Laufen, S 10–102 (Beiheft 3, Teil 1)Google Scholar
  101. Küppers M, Häder D-P (1999) Methodik der Photosyntheseforschung – Messung und Interpretation des CO2-Gasaustausches von intakten Blättern. In: Häder D-P (Hrsg) Photosynthese. Thieme, Tübingen, S 21–46Google Scholar
  102. Küppers M, Pfiz M (2009) Role of photosynthetic induction for daily and annual carbon gains of leaves and plant canopies. In: Laisk A, Nedbal L, Govindjee (Hrsg) Photosynthesis in silico – understanding complexity from molecules to ecosystems. Advances in photosynthesis and respiration, Bd. 29. Springer, Dordrecht, S 417–440Google Scholar
  103. Küppers M, Schulze E-D (1985) An empirical model of net photosynthesis and leaf conductance for the simulation of diurnal courses of CO2 and H2O exchange. Aust J Plant Physiol 12:513–526Google Scholar
  104. Küppers M, Schmitt D, Liner S, Böhm C, Kanzler M, Veste M (2017) Photosynthetic characteristics and simulation of annual leaf carbon balances of hybrid poplar (Populus nigra L. × P. maximowiczii Henry) and black locust (Robinia pseudoacacia L.) in a central European agroforestry system. Agrofor Syst.  https://doi.org/10.1007/s10457-017-0071-zCrossRefGoogle Scholar
  105. Ladrera R, Marino D, Larrainzar E, González EM, Arrese-Igor C (2007) Reduced carbon availability to bacteroids and elevated ureides in nodules, but not in shoots, are involved in the nitrogen fixation response to early drought in soybean. Plant Physiol 145(2):539–546PubMedPubMedCentralGoogle Scholar
  106. Lambers H, Chapin FS III, Pons TL (2008) Plant physiological ecology. Springer, HeidelbergGoogle Scholar
  107. Lamerre J, Schwarz KU, Langhof M, von Wühlisch G, Greef JM (2015) Productivity of poplar short rotation coppice in an alley-cropping. Agrofor Syst 89:933–942Google Scholar
  108. Larcher W (2003) Physiological plant ecology – ecophysiology and stress physiology of functional groups. Springer, HeidelbergGoogle Scholar
  109. Larson PR, Isebrands JG (1972) The relationship between leaf production and wood weight on first-year root sprouts of two Populus clones. Can J Res 2:98–104Google Scholar
  110. Van der Lelie D, Taghavi S, Monchy S, Schwender J, Miller L, Ferrieri R, Rogers A, Wu X, Zhu W, Weyens N, Vangronsveld J, Newman L (2009) Poplar and its bacterial endophytes: coexistence and harmony. CRC Crit Rev Plant Sci 28(5):346–358Google Scholar
  111. Liang ZS, Yang J, Shao HB, Hana RL (2006) Investigation on water consumption characteristics and water use efficiency of poplar under soil water deficits on the Loess Plateau. Colloids Surfaces B: Biointerfaces 53(1):23–28PubMedGoogle Scholar
  112. Liberloo M, Lukac M, Calfapietra C, Hossbeek MR, Gielen B, Miglietta F, Scarascia-Mugnozza GE, Ceulemans R (2009) Coppicing shifts CO2 stimulation of poplar productivity to above-ground pools: a synthesis of leaf to stand level results from the POP/EUROFACE experiment. New Phytol 182:331–346PubMedGoogle Scholar
  113. Linderson M-L, Iritz Z, Lindroth A (2007) The effect of water availability on stand-level productivity, transpiration, water use efficiency and radiation use efficiency of field-grown willow clones. Biomass Bioenergy 31(7):460–468Google Scholar
  114. Lindroth A, Båth A (1999) Assessment of regional willow coppice yield in Sweden on basis of water availability. For Ecol Manage 121:57–65Google Scholar
  115. Lindroth A, Cienciala E (1996) Water use efficiency of short-rotation Salix viminalis at leaf, tree and stand scales. Tree Physiol 16:257–262PubMedGoogle Scholar
  116. Lindroth A, Verwijst T, Halldin S (1994) Water-use efficiency of willow: variation with season, humidity and biomass allocation. J Hydrol (Amst) 156:1–19Google Scholar
  117. Liu Z, Dickmann DI (1992) Responses of two hybrid Populus clones to flooding, drought, and nitrogen availability. I. Morphology and growth. Can J Bot 70(11):2265–2270Google Scholar
  118. Löf M, Welander NT (2004) Influence of herbaceous competitors on early growth in direct seeded Fagus sylvatica L. and Quercus robur L. Ann Sci 61:781–788Google Scholar
  119. Lorenz M, Becher G, Mues V, Fischer R, Ulrich E, Dobbertin M, Stofer S (2004) Forest condition in Europe: 2004 technical report of ICP forests. Arbeitsber Inst Weltforstwirtsch 2004/2. BfH, HamburgGoogle Scholar
  120. Lüttschwager D, Alia LA, Ewald D (2015) Auswirkungen von moderatem Trockenstress auf Photosynthesekapazität, Wassernutzungseffizienz und Biomasseproduktion von drei Pappelklonen. In: Liesebach M (Hrsg) FastWOOD II: Züchtung schnellwachsender Baumarten für die Produktion von nachwachsender Rohstoffe im Kurzumtrieb –Erkenntnisse aus 6 Jahren FastWOOD. Thünen Report 26, S 192–196Google Scholar
  121. MacLean AM, Finan TM, Sadowsky MJ (2007) Genomes of the symbiotic nitrogen-fixing bacteria of legumes. Plant Physiol 144:615–622PubMedPubMedCentralGoogle Scholar
  122. Mahoney JM, Rood SB (1992) Response of a hybrid poplar to water table decline in different substrates. For Ecol Manage 54:141–156Google Scholar
  123. Mantovani D, Veste M, Badorreck A, Freese D (2013) Evaluation of fast growing tree transpiration under different soil moisture regimes using wicked lysimeters. Iforest – J Biogeosciences For 6:190–200Google Scholar
  124. Mantovani D, Veste M, Freese D (2014a) Black locust (Robinia pseudoacacia L.) ecophysiological and morphological adaptations to drought and their consequence on biomass production and water use efficiency. N Z J For 44:29Google Scholar
  125. Mantovani D, Veste M, Freese D (2014b) Effects of drought frequency on growth performance and transpiration of young black locust (Robinia pseudoacacia L.). Int J For Res.  https://doi.org/10.1155/2014/821891CrossRefGoogle Scholar
  126. Mantovani D, Veste M, Böhm C, Vignudelli M, Freese D (2015a) Drought impact on the spatial and temporal variation of growth performance and plant water status of black locust (Robinia pseudoacacia L.) in agroforestry systems in Lower Lusatia (Germany). Iforest – J Biogeosciences For 8:743–747Google Scholar
  127. Mantovani D, Veste M, Boldt-Burisch K, Fritsch S, Koning L, Freese D (2015b) Carbon allocation, nodulation, and biological nitrogen fixation of black locust (Robinia pseudoacacia L.) under soil water limitation. Ann For Res 58(2):259–274Google Scholar
  128. Marino D, Frendo P, Ladrera R, Zabalza A, Puppo A, Arrese-Igor C, González EM (2007) Nitrogen fixation control under drought stress. Localized or systemic? Plant Physiol 143(4):1968–1974PubMedPubMedCentralGoogle Scholar
  129. Martin PJ, Stephens W (2007) Willow growth in response to nutrients and moisture on a clay landfill cap soil I. Growth and biomass production. Bioresour Technol 97:437–448Google Scholar
  130. Matyssek R, Herppich WB (2017) Experimentelle Pflanzenökologie. Springer Reference Naturwissenschaften. Springer, HeidelbergGoogle Scholar
  131. Matyssek R, Fromm J, Rennenberg H, Roloff A (2010) Biologie der Bäume – von der Zelle zur globalen Ebene. UTB, Stuttgart-HohenheimGoogle Scholar
  132. McIvor IR, Douglas GB, Benavides R (2009) Coarse root growth of Veronese poplar trees varies with position on an erodible slope in New Zealand. Agroforest Syst 76:251–264Google Scholar
  133. Mebrahtu T, Hanover J, Layne DR, Flore JA (1991) Leaf temperature effects on net photosynthesis, dark respiration, and photorespiration of seedlings of black locust families with contrasting growth rates. Can J For Res 21:1616–1621Google Scholar
  134. Mebrahtu T, Layne DR, Hanover J, Flore JA (1993) Net photosynthesis of black locust seedlings in response to irradiance, temperature and CO2. Photosynthetica 28:145–154Google Scholar
  135. Merilo E, Eensali E, Tulva I, Räi O, Calfapietra C, Kull O (2010) Photosynthetic response to elevated CO2 in poplar (POP-EUROFACE) in relation to leaf nitrogen partiting. Balt For 16:162–171Google Scholar
  136. Metspalu M, Löhmus K, Augustin J, Russow R, Mander Ü (2000) Negative effect of N-fertilisation on N-fixation in Alnus-Frankia symbiosis as shown by 15N. 4th European Nitrogen Fixation Conference, Sevilla, 16.–20. September 2000Google Scholar
  137. Minucci JM, Miniat CF, Teskey R, Wurzburger N (2017) Tolerance or avoidance: drought frequency determines the response of an N2-fixing tree. New Phytol 215:434–442PubMedGoogle Scholar
  138. Mola-Yudego B, Aronsson P (2008) Yield models for commercial willow biomass plantations in Sweden. Biomass Bioenergy 32(9):829–837Google Scholar
  139. Murach D, Hartmann H, Murn Y, Schultze M, Wael A, Röhle H (2009) Standortbasierte Leistungsschätzung in Agrarholzbeständen in Brandenburg und Sachsen. In: Reeg T, Bemann A, Konold W, Murach D, Siecker H (Hrsg) Anbau und Nutzung von Bäumen auf landwirtschaftlichen Flächen. Wiley-VCH, Weinheim, S 29–40Google Scholar
  140. Nelson ND, Isebrands JG (1983) Late-season photosynthesis and photosynthate distribution in an intensively-cultured Populus nigra × P. laurifolia clones. Photosynthetica 17:537–549Google Scholar
  141. Niinemets Ü, Al Afas N, Cescatti A, Pellis A, Ceulemans R (2004) Petiole length and biomass investment in support modify light-interception efficiency in dense poplar plantations. Tree Physiol 24:141–154PubMedGoogle Scholar
  142. Noh NJ, Son Y, Koo J, Seo KW, Kim RH, Lee YY, Yoo KS (2010) Comparison of nitrogen fixation for north-and south-facing Robinia pseudoacacia stands in Central Korea. J Plant Biol 53(1):61–69Google Scholar
  143. Nordh NE, Verwijst T (2004) Above-ground biomass assessments and first cutting cycle production in willow (Salix sp.) coppice – a comparison between destructive and non-destructive methods. Biomass Bioenergy 27:1–8Google Scholar
  144. Olesniewicz KS, Thomas RB (1999) Effects of mycorrhizal colonization on biomass production and nitrogen fixation of black locust (Robinia pseudoacacia) seedlings grown under elevated atmospheric carbon dioxide. New Phytol 142:133–140Google Scholar
  145. Oliveira N, del Ríoa M, Forrester DI, Rodríguez-Soalleirod R, Pérez-Cruzado C, Cañellasa I, Sixtoa H (2018) Mixed short rotation plantations of Populus alba and Robinia pseudoacacia for biomass yield. For Ecol Manage 410:48–55Google Scholar
  146. Oliver RJ, Blyth E, Taylor G, Finch JW (2015) Water use and yield of bioenergy poplar in future climates: modelling the interactive effects of elevated atmospheric CO2 and climate on productivity and water use. Gbc Bioenergy 7:958–973Google Scholar
  147. Palma JHN, Graves AR, Crous-Duran J, Upson M, Paulo JA, Oliveira TS, Silvestre Garcia de Jalón S, Burgess PJ (2016) Yield-SAFE Model Improvements. Milestone Report 29 (6.4) for EU FP7 Research Project: AGFORWARD 613520 (5 July 2016), 30 S. https://www.agforward.eu/index.php/en/yield-safe-model-improvements.htmlGoogle Scholar
  148. Palma JHN, Crous-Duran J, Graves AR, Garcia de Jalon S, Upson M, Oliveira TS, Paulo JA, Ferreiro-Dominguez, Moreno, Burgess PJ (2017) Integrating belowground carbon dynamics into Yield-SAFE, a parameter sparse agroforestry model. Agrofor Syst.  https://doi.org/10.1007/s10457-017-0123-4CrossRefGoogle Scholar
  149. Petzold R, Schubert B, Feger K-H (2010) Biomasseproduktion, Nährstoffallokation und bodenökologische Veränderungen einer Pappel-Kurzumtriebsplantage in Sachsen (Deutschland). Die Bodenkult 61(3):23–35Google Scholar
  150. Pflugmacher C, Murach D (2013) Cultivation of Poplar on former sewage plantations – Optimierung der Bewirtschaftung und ökologische Begleitforschung (Im Auftrag der RWE. Endbericht, 82 S)Google Scholar
  151. Pflugmacher C, Hartmann H (2016) Wurzeluntersuchungen an Pappel im Kurzumtrieb – Grundwasseranschluss und Sortenunterschiede. Studie der Hochschule für nachhaltige Entwicklung Eberswalde im Auftrag des Thünen Institutes. Eberswalde, unveröffentlichter Bericht, 126 SGoogle Scholar
  152. Phillips CJ, Marden M, Suzanne LM (2014) Observations of root growth of young poplar and willow planting types. N Z J For Sci 44:15Google Scholar
  153. Pinno BD, Bélanger N (2009) Competition control in juvenile hybrid poplar plantations across a range of site productivities in central Saskatchewan, Canada. New For 37:213–225Google Scholar
  154. Pregitzer KS, Friend AL (1996) The structure and function of Populus root systems. In: Stettler R, Bradshaw T, Heilman P, Hinckley T (Hrsg) Biology of Populus and its implications for management and conservation. NRC Research Press, National Research Council of Canada, Ottawa, S 331–354Google Scholar
  155. Pregitzer KS, Dickmann DI, Hendrick R, Nguyen PV (1990) Whole-tree carbon and nitrogen partitioning in young hybrid poplars. Tree Physiol 7:79–93PubMedGoogle Scholar
  156. Pregitzer KS, Zak DR, Curtis PS, Kubiske ME, Teeri JA, Vogel CS (1995) Athmospheric, CO2, soil nitrogen and turnover of fine roots. New Phytol 129:579–585Google Scholar
  157. Pretzsch H (2009) Forest dynamics, growth and yield. Springer, HeidelbergGoogle Scholar
  158. Pretzsch H, Forrester DI, Bauhus J (2017) Mixed-species forests. Springer, HeidelbergGoogle Scholar
  159. Puri S, Singh V, Bhushan B, Singh S (1994) Biomass production and distribution of roots in three stands of Populus deltoids. For Ecol Manage 65:135–147Google Scholar
  160. Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Ecol 14:435–443Google Scholar
  161. Rhodenbaugh EJ, Pallardy SG (1993) Water stress, photosynthesis and early growth pattern of cuttings of three Populus clones. Tree Physiol 13:213–226PubMedGoogle Scholar
  162. Roberts DR, Zimmerman RW, Stringer JW, Carpenter SB (1983) The effects of combined nitrogen on growth, nodulation, and nitrogen fixation of black locust seedlings. Can J Res 13:1251–1254Google Scholar
  163. Rock J, Lasch P, Kollas C (2009) Auswirkungen von absehbarem Klimawandel auf Kurzumtriebsplantagen. In: Reeg T, Bemann A, Konold W, Murach D, Siecker H (Hrsg) Anbau und Nutzung von Bäumen auf landwirtschaftlichen Flächen. Wiley-VCH, Weinheim, S 19–25Google Scholar
  164. Roden JS, Pearcy RW (1993a) Effect of leaf flutter on the light environment of poplars. Oecologia 93:201–207PubMedGoogle Scholar
  165. Roden JS, Pearcy RW (1993b) Photosynthetic gas exchange response of poplars to steady-state and dynamic light environments. Oecologia 93:208–214PubMedGoogle Scholar
  166. Rogers A, McDonald K, Muehlbauer MF, Hoffman A, Koenig K, Newman L, Taghavi S, van der Lelie D (2012) Inoculation of hybrid poplar with the endophytic bacterium Enterobacter sp. 638 increases biomass but does not impact leaf level physiology. GCB Bioenergy 4:364–370Google Scholar
  167. Röhle H (2009) Arbeitskreis Biomasse: Verfahrensempfehlungen zur Methodik der Biomasseermittlung in Kurzumtriebsbeständen. Deutscher Verband Forstlicher Forschungsanstalten, Sektion Ertragskunde, Bd. 209, S 220–226Google Scholar
  168. Röhle H (2013) Standortsleistungsschätzung und Biomasseermittlung in Kurzumtriebsplantagen. Allg Forst- Jagdztg 184:237–246Google Scholar
  169. Röhle H, Hartmann KU, Gerold D, Steinke C, Schröder J (2006) Überlegungen zur Aufstellung von Biomassefunktionen für Kurzumtriebsbestände. Allg Forst- Jagdztg 177:178–187Google Scholar
  170. Röhle H, Hartmann KU, Steinke C, Murach D (2009) Leistungsvermögen und Leistungserfassung von Kurzumtriebsbeständen. In: Reeg T, Bemann A, Konold W, Murach D, Siecker H (Hrsg) Anbau und Nutzung von Bäumen auf landwirtschaftlichen Flächen. Wiley-VCH, Weinheim, S 41–55Google Scholar
  171. Russow R, Veste M, Littmann T (2004) Using the natural 15N-abundance to assess the major nitrogen inputs into the sand dune area of the north-western Negev Desert (Israel). Isotopes Environ Health Stud 40:57–67PubMedGoogle Scholar
  172. Rytter L (1996a) Grey alder in forestry: a review. Nor J Agric Sci Suppl 24:61–78Google Scholar
  173. Rytter L (1996b) The potential of grey alder plantation forestry. In: Perttu K, Koppel A (Hrsg) Short rotation willow coppice for renewable energy and improved environment. Rapport/Report 57. Swedish University of Agricultural Sciences, S 89–94Google Scholar
  174. Rytter RM (2001) Biomass production and allocation, including fine-root turnover, and annual N uptake in lysimeter-grown basket willows. For Ecol Manage 140:177–192Google Scholar
  175. Rytter L, Arveby AS, Granhall U (1991) Dinitrogen (C2H2) fixation in relation to nitrogen fixation of grey alder (Alnus incana (L.) Mönch) plantations in a peat bog. Biol Fertil Soils 10(4):233–240Google Scholar
  176. Scarascia-Mugnozza G, De Angelis P, Sabatti M, Calfapietra C, Miglietta F, Raines C, Godbold D, Hoosbeek M, Taylor G, Polle A, Ceulemans R (2007) Global change and agro-forest ecosystems: adaptation and mitigation in a FACE experiment on a poplar plantation. Plant Biosyst 139:255–264Google Scholar
  177. Scarascia-Mugnozza GE, Hinckley TM, Stettler RF, Heilman PE, Isebrands JG (1999) Production physiology and morphology of Populus species and their hybrids grown under short rotation. III. Seasonal carbon allocation patterns from branches. Can J For Res 29:1419–1432Google Scholar
  178. Scherling C, Ulrich K, Ewald D, Weckwerth W (2009) A metabolic signature of the beneficial interaction of the endophyte Paenibacillus sp isolate and in vitro-grown poplar plants revealed by metabolomics. Mol Plant-microbe Interactions 22:1032–1037Google Scholar
  179. Schopfer P, Brennicke A (2010) Pflanzenphysiologie. Spinger Verlag, HeidelbergGoogle Scholar
  180. Seserman D, Pohle I, Veste M, Freese D (2017) Variabilität der holzigen Biomasseproduktion von Pappel und Robinie als Folge des Klimawandels in einem Alley-Cropping-System in der Lausitz. In: Landgraf D (Hrsg) Tagungsband Schnellwachsende Baumarten – Etablierung, Management und Verwertung Erfurt, 16.11.2017, S 88–89Google Scholar
  181. Seserman D, Pohle I, Veste M, Freese D (2018) Simulating climate change impacts on hybrid-poplar and black locust short-rotation coppies. Forests 9:419Google Scholar
  182. Skibbe K (2016) Entwicklung eines Ertragsschätzers für Kurzumtriebsbestände aus Weide. Dissertation, Fakultät für Umweltwissenschaften, TU DresdenGoogle Scholar
  183. Ślązak A, Böhm C, Veste M (2013) Kohlenstoffspeicherung, Nährstoff- und Wasserverfügbarkeit. In: Wagener F, Heck P, Böhme J (Hrsg) Nachwachsende Rohstoffe als Option für den Naturschutz – Naturschutz durch Landbau. Schlussbericht des Verbundvorhabens: Entwicklung extensiver Landnutzungskonzepte für die Produktion nachwachsender Rohstoffe als mögliche Ausgleichs- und Ersatzmaßnahmen (ELKE). Fachagentur für Nachwachsende Rohstoffe, Gülzow, S 130–149Google Scholar
  184. Smit AL, Bengough AG, Engels C, Noordwijk M van, Pellerin S, Geijn SC van de (Hrsg) (2000) Root Methods: A Handbook. Springer Verlag, Heidelberg, 565 SGoogle Scholar
  185. Sommer J, Hartmann L, Dippold MA, Lamersdorf NP (2017) Specific Nmin uptake patterns of two widely applied poplar and willow clones for short rotation coppices – Implications for management practices. Biomass Bioenergy 98:236–242Google Scholar
  186. Stahr K, Kandeler E, Herrmann L, Streck T (2016) Bodenkunde und Standortlehre, 3. Aufl. UTB, Stuttgart-HohenheimGoogle Scholar
  187. Staudinger C, Mehmeti-Tershani V, Gil-Quintana E, Gonzalez EM, Hofhansl F, Bachmann G, Wienkopp S (2016) Evidence for a rhizobia-induced drought stress response strategy in Medicago truncatula. J Proteomics 136:202–213PubMedGoogle Scholar
  188. Stephens W, Hess TM, Knox JW (2001) The effect of energy crops on hydrology. Aspects Appl Ecol 65:101–108Google Scholar
  189. Stokes A, Mattheck C (1996) Variation of wood strength in tree roots. J Exp Bot 47:693–699Google Scholar
  190. Szymanski R (2010) Ökophysiologische Untersuchungen zum CO2-Blattgasaustausch an Populus tremuloides Michx. und Picea glauca Moench in Zentralalaska. Diplomarbeit, Institut für Botanik der Universität Hohenheim, 115 SGoogle Scholar
  191. Tallis M, Casella E, Henshall PA, Aylott M, Randle TJ, Morision JIL, Taylor G (2013) Development and evaluation of ForestGrowth-SRC a process-based model for short rotation coppice yield and spatial supply reveals poplar uses water more efficiently than willow. Glob Chang Biol Bioenergy 5:53–66Google Scholar
  192. Tcherkez G, Gauthier P, Buckley TN et al (2017) Leaf day respiration: low CO2 flux but high significance for metabolism and carbon balance. New Phytol 216:986–1001PubMedGoogle Scholar
  193. Thomas F (2018) Grundzüge der Pflanzenökologie. Springer, HeidelbergGoogle Scholar
  194. Tschaplinski TJ, Blake TI (1989b) Correlation between early root production, carbohydrate metabolism, and subsequent biomass production in hybrid poplar. Can J Bot 67:2168–2174Google Scholar
  195. Tschaplinski TJ, Blake TJ (1989a) The role of sink demand in carbon portioning and photosynthetic reinvigoration following shoot decapitation. Physiol Plant 75:166–173Google Scholar
  196. Ulrich A, Zaspel I (2000) Phyologenetic diversity of rhizobial strains nodulating Robinia pseudoacacia L. Microbiology 146:2997–3005PubMedGoogle Scholar
  197. Ulrich K, Ulrich A, Ewald D (2008) Diversity of endophytic bacterial communities in poplar grown under field conditions. FEMS Microbiol Ecol 63:169–180PubMedGoogle Scholar
  198. Ulrich K, Ewald D, Scherling C, Weckwerth W (2009) Kleine Bakterien – große Wirkung? – Endophytische Bakterien fördern das Wachstum von Bäumen. Forschungsreport Ernährung Landwirtsch Verbraucherschutz 2:40–42Google Scholar
  199. Uri V, Löhmus K, Kiviste A, Aosaar J (2009) The dynamics of biomass production in relation to foliar and root traits in a grey alder (Alnus incana (L.) Moench) plantation on abandoned agricultural land. Forestry 82(1):61–74Google Scholar
  200. Verwijst T (1991) Logarithmic transformations in biomass estimation procedures: violation of the linearity assumption in regression analysis. Biomass Bioenergy 1(3):175–180Google Scholar
  201. Veste M (2009) Auswirkungen des Klimawandels auf die Waldvegetation: Anpassungsfähigkeit und ihre Grenzen. In: Korn H, Schliep R, Stadler J (Hrsg) Biodiversität und Klima – Vernetzung der Akteure in Deutschland IV. BfN-Skripten 246, S 31–34Google Scholar
  202. Veste M, Halke C (2017) Ökophysiologische Plastizität der Photosynthese von Robinien (Robinia pseudoacacia L.) und Hybrid-Pappeln (Populus nigra L. × P. maximowiczii Henry) bei Hitzestress und Sommertrockenheit in der Niederlausitz. In: Böhm C (Hrsg) Bäume in der Land(wirt)schaft – von der Theorie in die Praxis 5. Agroforstforum, Tagungsband, Cottbus, S 144–157Google Scholar
  203. Veste M, Herppich WB (1995) Diurnal and seasonal fluctations in the atmospheric CO2 concentration on the net CO2 exchange of poplar trees. Photosynthetica 31:371–378Google Scholar
  204. Veste M, Kriebitzsch W-U (2013) Einfluss von Trockenstress auf Photosynthese, Transpiration und Wachstum junger Robinien (Robinia pseudoacacia L.). Forstarchiv 84:35–42Google Scholar
  205. Veste M, Schaaf W (2010) Atmospheric deposition. In: Schaaf W, Biemelt D, Hüttl RF (Hrsg) Initial development of the artificial catchment Chicken Creek – monitoring program and survey 2005–2008. Ecosystem Development 2, S 21–25Google Scholar
  206. Veste M, Staudinger M, Küppers M (2008) Spatial and temporal variability of soil water in drylands: plant water potential as a diagnostic tool. For Stud China 10(2):74–80Google Scholar
  207. Veste M, Balasus A, Kern J, Herppich WB (2012) Influence of nitrogen fertilization on photosynthesis and leaf nitrogen content of leaves of poplar and willow plants in short rotation plantations. Verhandlungen der Gesellschaft für Ökologie 42, S 138Google Scholar
  208. Veste M, Böhm C, Quinkenstein A, Freese D (2013) Biologische Stickstoff-Fixierung der Robinie. AFZ-der Wald 2/2013:40–42Google Scholar
  209. Veste M, Malaga Linares RA, Seserman DM, Schmitt D, Wachendorf M, Küppers M (2018) Annual leaf carbon fluxes, light interception, and stand structure of poplars and black locusts in an alley-cropping system, Lower Lusatia, Germany. In: Proceedings 4th European Agroforestry Conference: Agroforestry as sustainable land use, S 488–492Google Scholar
  210. Wachendorf M (2010) Ökophysiologische Untersuchungen zum CO2-Blattgasaustausch an Betula papyrifera und Picea mariana in Zentralalaska. Diplomarbeit, Institut für Botanik der Universität HohenheimGoogle Scholar
  211. Waring RH (1983) Estimating forest growth and efficiency in relation to canopy leaf area. Adv Ecol Res 13:327–354Google Scholar
  212. Wei G, Chen W, Zhu W, Chen C, Young JPW, Bontemps C (2009) Invasive Robinia pseudoacacia in China is nodulated by Mesorhizobium and Sinorhizobium species that share similar nodulation genes with native American symbionts. FEMS Microbiol Ecol 68:320–328PubMedGoogle Scholar
  213. Weih M (2001) Evidence for increased sensitivity to nutrient and water stress in a fast-growing hybrid willow compared with a natural willow clone. Tree Physiol 21:1141–1148PubMedGoogle Scholar
  214. Weih M, Nordh N-E (2002) Characterising willows for biomass and phytoremediation: growth, nitrogen and water use of 14 willow clones under different irrigation and fertilisation regimes. Biomass Bioenergy 23:397–413Google Scholar
  215. Van der Werf W, Keesman K, Burgess PJ, Graves AR, Pilbeam D, Incoll LD, Metselaar K, Mayus M, Stappers R, van Keulen H, Palma JHN, Dupraz C (2007) Yield-SAFE: a parameter-sparse, process-based dynamic model for predicting resource capture, growth, and production in agroforestry systems. Ecol Eng 29:419–433Google Scholar
  216. Wurzburger N, Miniat CF (2013) Drought enhances symbiotic dinitrogen fixation and competitive ability of a temperate forest tree. Oecologia 174:1117–1126PubMedGoogle Scholar
  217. Xu F, Guo W, Xu W, Du N, Wang Y (2009) Leaf movement and photosynthetic plasticity of black locust (Robinia pseudoacacia L.) alleviate stress under different light and water conditions. Acta Physiol Plantarum 31:553–563Google Scholar
  218. Yang Y, Tang M, Sulpice R, Chen H, Tian S, Ban Y (2014) Arbuscular mycorrhizal fungi alter fractal dimension characteristics of Robinia pseudoacacia L. seedlings through regulating plant growth, leaf water status, photosynthesis, and nutrient concentration under drought stress. J Plant Growth 33:612–625Google Scholar
  219. Zhu XQ, Wang CY, Chen H, Tang M (2014) Effects of arbuscular mycorrhizal fungi on photosynthesis, carbon content, and calorific value of black locust seedlings. Photosynthetica 52:247–252Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Maik Veste
    • 1
    • 2
    Email author
  • Candy Pflugmacher
    • 3
  • Holger Hartmann
    • 3
  • Rainer Schlepphorst
    • 4
  • Dieter Murach
    • 3
  1. 1.CEBra – Centrum für Energietechnologie Brandenburg e.V.CottbusDeutschland
  2. 2.Institut für BotanikUniversität HohenheimStuttgartDeutschland
  3. 3.Fachbereich für Wald und UmweltHochschule für nachhaltige Entwicklung EberswaldeEberswaldeDeutschland
  4. 4.Bewässerung in der Landwirtschaft / Nachwachsende RohstoffeForschungsinstitut für Bergbaufolgelandschaften e.V.FinsterwaldeDeutschland

Personalised recommendations