Advertisement

Emissionen von klimarelevanten Gasen aus Agrarholzanpflanzungen

  • Jürgen KernEmail author
  • Axel Don
Chapter

Zusammenfassung

Der zur Zeit auf der Erde stattfindende Klimawandel stellt die bisher größte globale Herausforderung der Menschheit dar. Um eine gefährliche anthropogene Störung des Klimasystems zu verhindern, ist es erforderlich, die in erster Linie durch CO2‐Emissionen bedingte globale Temperaturerhöhung langfristig auf maximal 2,0 K über dem vorindustriellen Niveau zu begrenzen (WBGU 2003). Als eine geeignete Strategie zur Minderung der CO2‐Anreicherung in der Erdatmosphäre wird sowohl in der Forstwirtschaft als auch in der Landwirtschaft die Produktion und die energetische Nutzung von Holz verfolgt (Grogan und Matthews 2002; Kirschbaum 2003). Besonders erfolgversprechend ist dabei die landwirtschaftliche Holzproduktion in Plantagen durch hohe Biomasseerträge pro Fläche. Dabei ist allerdings zu bedenken, dass auch beim Anbau von schnellwachsenden Baumarten auf landwirtschaftlich genutzten Standorten ebenso wie in anderen Ackerkulturen mit der Bodenbearbeitung, der Pflanzung, der Düngung, der Ernte und während des gesamten Vegetationszyklus klimarelevante Gase aus dem Boden und von den Pflanzen freigesetzt werden. Zu den klimarelevanten Gasen zählen Kohlenstoffdioxid bzw. Kohlendioxid (CO2), Methan (CH4), Distickstoffmonoxid bzw. Lachgas (N2O), Schwefelhexafluorid (SF6), perfluorierte Kohlenwasserstoffe (PFC) und teilfluorierte Kohlenwasserstoffe (HFC).

Literatur

  1. Abou Jaoudé R, Lagomarsino A, De Angelis P (2011) Impacts of nitrogen fertilisation and coppicing on total and heterotrophic soil CO2 efflux in a short rotation poplar plantation. Plant Soil 339:219–230CrossRefGoogle Scholar
  2. Agostini F, Gregory AS, Richter GM (2015) Carbon sequestration by perennial energy crops: Is the jury still out? Bioenergy Res 8:1057–1080CrossRefGoogle Scholar
  3. Balasus A, Bischoff WA, Schwarz A, Scholz V, Kern J (2012) Nitrogen fluxes during the initial stage of willows and poplars in short rotation coppices. J Plant Nutr Soil Sci 175:729–738CrossRefGoogle Scholar
  4. Bouwman AF (1990) Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere. In: Bouwman AF (Hrsg) Soils and the Greenhouse Effect. John Wiley & Sons, Chichester, New York, S 61–127Google Scholar
  5. Bouwman AF (1996) Direct emission of nitrous oxide from agricultural soils. Nutr Cycl Agroecosys 46:53–70CrossRefGoogle Scholar
  6. Bouwman AF, Boumans LJM, Batjes NH (2002) Emissions of N2O and NO from fertilised fields: Summary of available measurement data. Glob Biogeochem Cycles 16:1058Google Scholar
  7. Carter MS, Hauggaard-Nielsen H, Heiske S, Jensen M, Thomsen ST, Schmidt JE, Johansen A, Ambus P (2012) Consequences of field N2O emissions for the environmental sustainability of plant-based biofuels produced within an organic farming system. Glob Chang Biol Bioenergy 4:435–452CrossRefGoogle Scholar
  8. Dalal RC, Allen DE, Livesley SJ, Richards G (2008) Magnitude and biophysical regulators of methane emission and consumption in the Australian agricultural, forest, and submerged landscapes: a review. Plant Soil 309:43–76CrossRefGoogle Scholar
  9. Djomo SN, Ceulemans R (2012) A comparative analysis of the carbon intensity of biofuels caused by land use changes. Glob Chang Biol Bioenergy 4:392–407CrossRefGoogle Scholar
  10. Dobbie KE, Smith KA (2003) Nitrous oxide emission factors for agricultural soils in Great Britain: the impact of soil water-filled pore space and other controlling variables. Glob Chang Biol 9:204–218CrossRefGoogle Scholar
  11. Don A, Osborne B, Hastings A, Skiba U, Carter MS, Drewer J, Flessa H, Freibauer A, Hyvönen N, Jones MB, Lanigan GJ, Mander Ü, Monti A, Djomo S, Valentine J, Walter K, Zegada-Lizarazu W, Zenone T (2012) Land-use change to bioenergy production in Europe: implications for the greenhouse gas balance and soil carbon. Glob Chang Biol Bioenergy 4:372–391CrossRefGoogle Scholar
  12. Drewer J, Finch JW, Lloyd CR, Baggs E, Skiba U (2012) How do soil emissions of N2O, CH4 and CO2 from perennial bioenergy crops differ from arable annual crops? Glob Chang Biol Bioenergy 4:408–419CrossRefGoogle Scholar
  13. Environmental Protection Agency (2006) Global anthropogenic non-CO2 greenhouse gas emissions – 1990–2020, Report. EPA, WashingtonGoogle Scholar
  14. Ericsson N, Nordberg A, Sundberg C, Ahlgren S, Hansson PA (2014) Climate impact and energy efficiency from electricity generation through anaerobic digestion or direct combustion of short rotation coppice willow. Appl Energy 132:86–98CrossRefGoogle Scholar
  15. Flessa H, Beese F, Brumme R, Priesack E, Przemeck E, Lay JP (1998a) Freisetzung und Verbrauch der klimarelevanten Spurengase N2O und CH4 beim Anbau nachwachsender Rohstoffe. Deutsche Bundesstiftung Umwelt, Initiativen zum Umweltschutz 11. Zeller, OsnabrückGoogle Scholar
  16. Flessa H, Wild U, Klemisch M, Pfadenhauer J (1998b) Nitrous oxide and methane fluxes from organic soils under agriculture. Eur J Soil Sci 49:327–335CrossRefGoogle Scholar
  17. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Quin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (Hrsg) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the IPCC. Cambridge University Press, Cambridge, New YorkGoogle Scholar
  18. Freney JR (1997) Nutrient cycling in agroecosystem. Emiss Nitrous Oxide From Soils Used Agric 49:1–6Google Scholar
  19. Grogan P, Matthews R (2002) A modelling analysis of the potential for soil carbon sequestration under short rotation coppice willow bioenergy plantations. Soil Use Manag 18:175–183CrossRefGoogle Scholar
  20. Hammar T, Ericsson N, Sundberg C, Hansson PA (2014) Climate impact of willow grown for bioenergy in Sweden. Bioenergy Res 7:1529–1540CrossRefGoogle Scholar
  21. Harris ZM, Spake R, Taylor G (2015) Land use change to bioenergy: a meta-analysis of soil carbon and GHG emissions. Biomass Bioenergy 82:27–39CrossRefGoogle Scholar
  22. Hellebrand HJ, Kern J, Scholz V (2003) Long-term studies on greenhouse gas fluxes during cultivation of energy crops on sandy soils. Atmos Environ 37:1635–1644CrossRefGoogle Scholar
  23. Hellebrand HJ, Scholz V, Kern J (2008) Long-term studies on variations of nitrogen fertiliser induced nitrous oxide fluxes. Atmos Environ 42:8403–8411CrossRefGoogle Scholar
  24. Hellebrand HJ, Strähle M, Scholz V, Kern J (2010) Soil carbon, soil nitrate, and soil emissions of nitrous oxide during cultivation of energy crops. Nutr Cycl Agroecosyst 87:175–186CrossRefGoogle Scholar
  25. Van den Heuvel RN, Hefting MM, Tan NCG, Jetten MSM, Verhoeven JTA (2009) N2O emission hotspots at different spatial scales and governing factors for small scale hotspots. Sci Total Environ 407:2325–2332CrossRefGoogle Scholar
  26. Higgins JA, Kurbatov AV, Spaulding NE, Brook E, Introne DS, Chimiak LM, Yan YZ, Mayewski PA, Bender ML (2015) Atmospheric composition 1 million years ago from blue ice in the Allan Hills, Antarctica. Proc Natl Acad Sci USA 112:6887–6891CrossRefGoogle Scholar
  27. Intergovernmental Panel on Climate Change (2006) Guidelines for National Greenhouse Gas. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (Hrsg) Chapter 11. IGES, Japan (http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html)Google Scholar
  28. Kavdir Y, Hellebrand HJ, Kern J (2008) Seasonal variations of nitrous oxide emission in relation to nitrogen fertilization and energy crop types in sandy soil. Soil Tillage Res 98:175–186CrossRefGoogle Scholar
  29. Kern J, Hellebrand HJ, Scholz V, Linke B (2010) Assessment of nitrogen fertilization for the CO2 balance during the production for poplar and rye. Renew Sustain Energy Rev 14:1453–1460CrossRefGoogle Scholar
  30. Kern J, Hellebrand HJ, Gömmel M, Ammon C, Berg W (2012) Effects of climatic factors and soil management on the methane flux in soils from annual and perennial energy crops. Biol Fertil Soils 48:1–8CrossRefGoogle Scholar
  31. Kern J, Germer S, Ammon C, Balasus A, Bischoff W-A, Schwarz A, Forstreuter M, Kauepenjohann M (2018). Environmental effects over the first 2½ rotation periods of a fertilised poplar short rotation coppice. BioEnergy Research 11:152–165.  https://doi.org/10.1007/s12155-017-9885-9CrossRefGoogle Scholar
  32. Kirschbaum MUF (2003) To sink or burn? A discussion of the potential contributions of forests to greenhouse gas balances through storing carbon or providing biofuels. Biomass Bioenergy 24:297–310CrossRefGoogle Scholar
  33. Koponen HT, Martikainen PJ (2004) Soil water content and freezing temperature affect freeze–thaw related N2O production in organic soil. Nutr Cycl Agroecosyst 69:213–219CrossRefGoogle Scholar
  34. Kuzyakov Y (2006) Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol Biochem 38:425–448CrossRefGoogle Scholar
  35. Littlewood J, Guo M, Boerjan W, Murphy RJ (2014) Bioethanol from poplar: a commercially viable alternative to fossil fuel in the European Union. Biotechnol Biofuels 7:1–12CrossRefGoogle Scholar
  36. Novoa RSA, Tejeda HR (2006) Evaluation of the N2O emissions from N in plant residues as affected by environmental and management factors. Nutr Cycl Agroecosys 75:29–46CrossRefGoogle Scholar
  37. Poeplau C, Don A (2013) Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe. Geoderma 192:189–201CrossRefGoogle Scholar
  38. Rees R, Augustin J, Alberti G, Ball B, Boeckx P, Cantarel A, Castaldi S, Chirinda N, Chojnicki B, Giebels M, Gordon H, Grosz B, Horvath L, Juszczak R, Klemedtsson A, Klemedtsson L, Medinets S, Machon A, Mapanda F, Nyamangara J, Olesen J, Reay D, Sanchez L, Cobena A, Smith K, Sowerby A, Sommer M, Soussana J, Stenberg M, Topp C, van Cleemput O, Vallejo A, Watson C, Wuta M (2013) Nitrous oxide emissions from European agriculture – an analysis of variability and drivers of emissions from field experiments. Biogeosciences 10:2671–2682CrossRefGoogle Scholar
  39. Rubino M, Dungait J, Evershed R, Bertolini T, De Angelis P, D’Onofrio A, Lagomarsino A, Lubritto C, Merola A, Terrasi F, Cotrufo M (2010) Carbon input belowground is the major C flux contributing to leaf litter mass loss: Evidences from a C-13 labelled-leaf litter experiment. Soil Biol Biochem 42:1009–1016CrossRefGoogle Scholar
  40. Smeets EMW, Bouwman LF, Stehfest E, van Vuuren DP, Posthuma A (2009) Contribution of N2O to the greenhouse gas balance of first-generation biofuels. Glob Chang Biol 15:1–23CrossRefGoogle Scholar
  41. Stehfest E, Bouwman L (2006) N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modelling of global annual emissions. Nutr Cycl Agroecosyst 74:207–228CrossRefGoogle Scholar
  42. Teepe R (1999) Quantifizierung der klimarelevanten Spurengasflüsse Lachgas (N2O) und Methan (CH4) beim Anbau der nachwachsenden Rohstoffe Pappelholz und Rapsöl. Berichte des Forschungszentrums Waldökosysteme, Series A, Bd. 158. Universität Göttingen, GöttingenGoogle Scholar
  43. Veldkamp E, Keller M (1997) Nitrogen oxide emissions from a banana plantation in the humid tropics. J Geophys Res 102:15889–15898CrossRefGoogle Scholar
  44. Verlinden MS, Broeckx LS, Zona D, Berhongaray G, De Groote T, Camino Serrano M, Janssens IA, Ceulemans R (2013) Net ecosystem production and carbon balance of an SRC poplar plantation during its first rotation. Biomass Bioenergy 56:412–422CrossRefGoogle Scholar
  45. Wachendorf C, Tönshoff C, Stülpnagel R (2011) C- und N-Dynamik im Boden nach der Rückführung aus Kurzumtriebsplantagen (KUP) – Erste Ergebnisse aus dem KURZUM-Projekt. Tagung: Chancen und Hemmnisse für die Energieholzproduktion aus Kurzumtriebsplantagen, Tharandt, 20.–21.10.2011Google Scholar
  46. Walter K, Don A, Flessa H (2014) No general soil carbon sequestration under Central European short rotation coppices. Glob Chang Biol Bioenergy 7:727–740CrossRefGoogle Scholar
  47. Walter K, Don A, Flessa H (2015) Net N2O and CH4 soil fluxes of annual and perennial bioenergy crops in two central German regions. Biomass Bioenergy 81:556–567CrossRefGoogle Scholar
  48. Wang YS, Xue M, Zheng XH, Ji BM, Du R, Wang YF (2005) Effects of environmental factors on N2O emission from and CH4 uptake by the typical grasslands in the Inner Mongolia. Chemosphere 58:205–215CrossRefGoogle Scholar
  49. WBGU – Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen (2003) Über Kioto hinaus denken – Klimaschutzstrategien für das 21. Jahrhundert. Sondergutachten. WBGU, BerlinGoogle Scholar
  50. Zona D, Janssens IA, Gioli B, Jungkunst HF, Serrano MC, Ceulemans R (2013) N2O fluxes of a bio-energy poplar plantation during a two years rotation period. Glob Chang Biol Bioenergy 5:536–547CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Abteilung BioverfahrenstechnikLeibniz-Institut für Agrartechnik und Bioökonomie e.V.PotsdamDeutschland
  2. 2.Institut für AgrarklimaschutzJohann Heinrich von Thünen-InstitutBraunschweigDeutschland

Personalised recommendations