Advertisement

Secure Computation from Elastic Noisy Channels

  • Dakshita Khurana
  • Hemanta K. Maji
  • Amit Sahai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9666)

Abstract

Noisy channels enable unconditionally secure multi-party computation even against parties with unbounded computational power. But inaccurate noise estimation and adversarially determined channel characteristics render known protocols insecure. Such channels are known as unreliable noisy channels. A large body of work in the last three decades has attempted to construct secure multi-party computation from unreliable noisy channels, but this previous work has not been able to deal with most parameter settings.

In this work, we study a form of unreliable noisy channels where the unreliability is one-sided, that we name elastic noisy channels: thus, in one form of elastic noisy channel, an adversarial receiver can increase the reception reliability unbeknown to the sender, but the sender cannot change the channel characteristic.

Our work shows feasibility results for a large set of parameters for the elastic binary symmetric channel, significantly improving upon the best results obtainable using prior techniques. In a key departure from existing approaches, we use a more elemental correlated private randomness as an intermediate cryptographic primitive that exhibits only a rudimentary essence of oblivious transfer. Toward this direction, we introduce new information-theoretic techniques that are potentially applicable to other cryptographic settings involving unreliable noisy channels.

Keywords

Noisy channel Unfair noisy channel Elastic noisy channel Oblivious transfer Information-theoretic security Secure computation 

References

  1. 1.
    Arikan, E.: Channel polarization: a method for constructing capacity-achieving codes. In: Kschischang, F.R., Yang, E. (eds.) 2008 IEEE International Symposium on Information Theory, ISIT 2008, Toronto, ON, Canada, 6–11 July 2008, pp. 1173–1177. IEEE (2008). http://dx.doi.org/10.1109/ISIT.2008.4595172
  2. 2.
    Arikan, E.: Channel polarization: a method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Trans. Inf. Theor. 55(7), 3051–3073 (2009). http://dx.doi.org/10.1109/TIT.2009.2021379 MathSciNetCrossRefGoogle Scholar
  3. 3.
    Beaver, D.: Perfect privacy for two-party protocols. In: Feigenbaum, J., Merritt, M. (eds.) Proceedings of DIMACS Workshop on Distributed Computing and Cryptography, vol. 2, pp. 65–77. American Mathematical Society (1989)Google Scholar
  4. 4.
    Beimel, A., Malkin, T., Micali, S.: The all-or-nothing nature of two-party secure computation. In: Wiener, M.J. (ed.) Advances in Cryptology - CRYPTO 1999. LNCS, vol. 1666, pp. 80–97. Springer, Heidelberg (1999)Google Scholar
  5. 5.
    Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for secure multi-party computation. In: Ning, P., Syverson, P.F., Jha, S. (eds.) ACM 15th Conference on Computer and Communications Security, CCS 2008, pp. 257–266. ACM Press, Alexandria (27–31 October 2008)Google Scholar
  6. 6.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: 20th Annual ACM Symposium on Theory of Computing, pp. 1–10. ACM Press, Chicago (2–4 May 1988)Google Scholar
  7. 7.
    Brassard, G., Crépeau, C., Wolf, S.: Oblivious transfers and privacy amplification. J. Cryptol. 16(4), 219–237 (2003). http://dx.doi.org/10.1007/s00145-002-0146-4 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cachin, C.: On the foundations of oblivious transfer. In: Nyberg, K. (ed.) Advances in Cryptology - EUROCRYPT 1998. LNCS, vol. 1403, pp. 361–374. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Calabro, C.: The exponential complexity of satisfiability problems. Ph.D. thesis (2009). http://www.escholarship.org/uc/item/0pk5w64k
  10. 10.
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: 34th Annual ACM Symposium on Theory of Computing, pp. 494–503. ACM Press, Montréal (19–21 May 2002)Google Scholar
  11. 11.
    Chandran, N., Goyal, V., Sahai, A.: New constructions for UC secure computation using Tamper-proof hardware. In: Smart, N.P. (ed.) EUROCRYPPT 2008. LNCS, vol. 4965, pp. 545–562. Springer, Heidelberg (2008)Google Scholar
  12. 12.
    Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: 20th Annual ACM Symposium on Theory of Computing, pp. 11–19. ACM Press, Chicago (2–4 May 1988)Google Scholar
  13. 13.
    Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Stat. 23, 493–507 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Chvátal, V.: The tail of the hypergeometric distribution. Discrete Math. 25(3), 285–287 (1979). http://www.sciencedirect.com/science/article/pii/0012365X79900840 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, New York (2006)zbMATHGoogle Scholar
  16. 16.
    Crépeau, C.: Efficient cryptographic protocols based on noisy channels. In: Fumy, W. (ed.) Advances in Cryptology - EUROCRYPT 1997. LNCS, vol. 1233, pp. 306–317. Springer, Heidelberg (1997)Google Scholar
  17. 17.
    Crépeau, C., Kilian, J.: Achieving oblivious transfer using weakened security assumptions (extended abstract). In: 29th Annual Symposium on Foundations of Computer Science, pp. 42–52. IEEE Computer Society Press, White Plains, New York (24–26 October 1988)Google Scholar
  18. 18.
    Crépeau, C., Kilian, J., Savvides, G.: Interactive hashing: an information theoretic tool (invited talk). In: Safavi-Naini, R. (ed.) ICITS 08: 3rd International Conference on Information Theoretic Security. LNCS, vol. 5155, pp. 14–28. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Crépeau, C., Morozov, K., Wolf, S.: Efficient unconditional oblivious transfer from almost any noisy channel. In: Blundo, C., Cimato, S. (eds.) SCN 04: 4th International Conference on Security in Communication Networks. LNCS, vol. 3352, pp. 47–59. Springer, Heidelberg (2005)Google Scholar
  20. 20.
    Damgård, I., Fehr, S., Morozov, K., Salvail, L.: Unfair noisy channels and oblivious transfer. In: Naor, M. (ed.) TCC 2004: 1st Theory of Cryptography Conference. LNCS, vol. 2951, pp. 355–373. Springer, Heidelberg (2004)Google Scholar
  21. 21.
    Damgård, I., Ishai, Y.: Scalable secure multiparty computation. In: Dwork, C. (ed.) Advances in Cryptology - CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Damgård, I., Kilian, J., Salvail, L.: On the (im)possibility of basing oblivious transfer and bit commitment on weakened security assumptions. In: Stern, J. (ed.) Advances in Cryptology - EUROCRYPT 1999. LNCS, vol. 1592, pp. 56–73. Springer, Heidelberg (1999)Google Scholar
  23. 23.
    Damgård, I., Nielsen, J.B., Wichs, D.: Isolated proofs of knowledge and isolated zero knowledge. In: Smart, N.P. (ed.) Advances in Cryptology - EUROCRYPT 2008. LNCS, vol. 4965, pp. 509–526. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008). http://dx.doi.org/10.1137/060651380 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryptology - CRYPTO 1982, pp. 205–210. Plenum Press, New York (1982)Google Scholar
  26. 26.
    Gallager, R.: Information Theory and Reliable Communication. Wiley, New York (1968)zbMATHGoogle Scholar
  27. 27.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th Annual ACM Symposium on Theory of Computing, pp. 218–229. City, New York (25–27 May 1987)Google Scholar
  28. 28.
    Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptography on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010: 7th Theory of Cryptography Conference. LNCS, vol. 5978, pp. 308–326. Springer, Heidelberg (2010)Google Scholar
  29. 29.
    Guruswami, V., Xia, P.: Polar codes: speed of polarization and polynomial gap to capacity. In: 54th Annual Symposium on Foundations of Computer Science, pp. 310–319. IEEE Computer Society Press, Berkeley (26–29 October 2013)Google Scholar
  30. 30.
    Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58(301), 13–30 (1963). http://www.jstor.org/stable/2282952 MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based cryptography (extended abstract). In: 30th Annual Symposium on Foundations of Computer Science, pp. 230–235. IEEE Computer Society Press, Research Triangle Park (30 October–1 November 1989)Google Scholar
  32. 32.
    Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A., Wullschleger, J.: Constant-rate oblivious transfer from noisy channels. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 667–684. Springer, Heidelberg (2011)Google Scholar
  33. 33.
    Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Extracting correlations. In: 50th Annual Symposium on Foundations of Computer Science, pp. 261–270. IEEE Computer Society Press, Atlanta (25–27 October 2009)Google Scholar
  34. 34.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer - efficiently. In: Wagner, D. (ed.) Advances in Cryptology - CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  35. 35.
    Katz, J.: Universally composable multi-party computation using tamper-proof hardware. In: Naor, M. (ed.) Advances in Cryptology - EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  36. 36.
    Kilian, J.: Founding cryptography on oblivious transfer. In: 20th Annual ACM Symposium on Theory of Computing, pp. 20–31. ACM Press, Chicago (2–4 May 1988)Google Scholar
  37. 37.
    Kilian, J.: A general completeness theorem for two-party games. In: 23rd Annual ACM Symposium on Theory of Computing, pp. 553–560. ACM Press, New Orleans (6–8 May 1991)Google Scholar
  38. 38.
    Kilian, J.: More general completeness theorems for secure two-party computation. In: 32nd Annual ACM Symposium on Theory of Computing, pp. 316–324. ACM Press, Portland (21–23 May 2000)Google Scholar
  39. 39.
    Korjik, V., Morozov, K.: Generalized oblivious transfer protocols based on noisy channels. In: Gorodetski, V.I., Skormin, V.A., Popyack, L.J. (eds.) MMM-ACNS 2001. LNCS, vol. 2052, pp. 219–229. Springer, Heidelberg (2001). http://dx.doi.org/10.1007/3-540-45116-1_22 CrossRefGoogle Scholar
  40. 40.
    Kraschewski, D., Maji, H.K., Prabhakaran, M., Sahai, A.: A full characterization of completeness for two-party randomized function evaluation. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 659–676. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  41. 41.
    Künzler, R., Müller-Quade, J., Raub, D.: Secure computability of functions in the IT setting with dishonest majority and applications to long-term security. In: Reingold, O. (ed.) TCC 2009: 6th Theory of Cryptography Conference. LNCS, vol. 5444, pp. 238–255. Springer, Heidelberg (2009)Google Scholar
  42. 42.
    Kushilevitz, E.: Privacy and communication complexity. In: 30th Annual Symposium on Foundations of Computer Science. pp. 416–421. IEEE Computer Society Press, Research Triangle Park, North Carolina (30 October–1 November 1989)Google Scholar
  43. 43.
    Maji, H.K., Prabhakaran, M., Rosulek, M.: Complexity of multi-party computation problems: the case of 2-party symmetric secure function evaluation. In: Reingold, O. (ed.) TCC 2009: 6th Theory of Cryptography Conference. LNCS, vol. 5444, pp. 256–273. Springer, Heidelberg (2009)Google Scholar
  44. 44.
    Maji, H.K., Prabhakaran, M., Rosulek, M.: A unified characterization of completeness and triviality for secure function evaluation. In: Galbraith, S.D., Nandi, M. (eds.) Progress in Cryptology INDOCRYPT 2012. LNCS, vol. 7668, pp. 40–59. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  45. 45.
    Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party computation system. In: Blaze, M. (ed.) Proceedings of the 13th USENIX Security Symposium, 9–13 August 2004, San Diego, CA, USA, pp. 287–302. USENIX (2004). http://www.usenix.org/publications/library/proceedings/sec04/tech/malkhi.html
  46. 46.
    Moran, T., Segev, G.: David and Goliath commitments: UC computation for asymmetric parties using tamper-proof hardware. In: Smart, N.P. (ed.) Advances in Cryptology - EUROCRYPT 2008, 27th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Proceedings. LNCS, vol. 4965, pp. 527–544. Springer, Heidelberg (2008). http://dx.doi.org/10.1007/978-3-540-78967-3_30 CrossRefGoogle Scholar
  47. 47.
    Nascimento, A.C.A., Winter, A.J.: On the oblivious-transfer capacity of noisy resources. IEEE Trans. Inf. Theor. 54(6), 2572–2581 (2008). http://dx.doi.org/10.1109/TIT.2008.921856 MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology - CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  49. 49.
    Rabin, M.: How to exchange secrets by oblivious transfer. Technical Report TR-81, Harvard Aiken Computation Laboratory (1981)Google Scholar
  50. 50.
    Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority (extended abstract). In: 21st Annual ACM Symposium on Theory of Computing, pp. 73–85. ACM Press, Seattle (15–17 May 1989)Google Scholar
  51. 51.
    Savvides, G.: Interactive Hashing and Reductions Between Oblivious Transfer Variants. Ph.D. thesis, Montreal, Que., Canada, Canada, aAINR32237 (2007)Google Scholar
  52. 52.
    Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Wiesner, S.: Conjugate coding. SIGACT News 15, 78–88 (1983). http://doi.acm.org/10.1145/1008908.1008920 CrossRefzbMATHGoogle Scholar
  54. 54.
    Wolf, S., Wullschleger, J.: Oblivious transfer is symmetric. In: Vaudenay, S. (ed.) Advances in Cryptology - EUROCRYPT 2006. LNCS, vol. 4004, pp. 222–232. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  55. 55.
    Wullschleger, J.: Oblivious-transfer amplification. In: Naor, M. (ed.) Advances in Cryptology - EUROCRYPT 2007. LNCS, vol. 4515, pp. 555–572. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  56. 56.
    Wullschleger, J.: Oblivious transfer from weak noisy channels. In: Reingold, O. (ed.) TCC 2009: 6th Theory of Cryptography Conference. LNCS, vol. 5444, pp. 332–349. Springer, Heidelberg (2009)Google Scholar
  57. 57.
    Yao, A.C.C.: Theory and applications of trapdoor functions (extended abstract). In: 23rd Annual Symposium on Foundations of Computer Science. pp. 80–91. IEEE Computer Society Press, Chicago (3–5 November 1982)Google Scholar

Copyright information

© International Association for Cryptologic Research 2016

Authors and Affiliations

  • Dakshita Khurana
    • 1
  • Hemanta K. Maji
    • 2
  • Amit Sahai
    • 1
  1. 1.Department of Computer Science, Center for Encrypted FunctionalitiesUCLALos AngelesUSA
  2. 2.Department of Computer SciencePurdue UniversityWest LafayetteUSA

Personalised recommendations