Constant-Round Leakage-Resilient Zero-Knowledge from Collision Resistance

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9666)

Abstract

We construct a constant-round leakage-resilient zero-knowledge argument system under the existence of collision-resistant hash function family. That is, using collision-resistant hash functions, we construct a constant-round zero-knowledge argument system such that for any cheating verifier that can obtain arbitrary amount of leakage of the prover’s state, there exists a simulator that can simulate the adversary’s view by obtaining at most the same amount of leakage of the witness. Previously, leakage-resilient zero-knowledge protocols were constructed only under a relaxed security definition (Garg-Jain-Sahai, CRYPTO’11) or under the DDH assumption (Pandey, TCC’14).

Our leakage-resilient zero-knowledge argument system satisfies an additional property that it is simultaneously leakage-resilient zero-knowledge, meaning that both zero-knowledgeness and soundness hold in the presence of leakage.

Notes

Acknowledgments

The author would like to thank the anonymous reviewers for their helpful comments.

References

  1. 1.
    Ananth, P., Goyal, V., Pandey, O.: Interactive proofs under continual memory leakage. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 164–182. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  2. 2.
    Anderson, R., Kuhn, M.: Tamper resistance: a cautionary note. In: WOEC, pp. 1–11 (1996)Google Scholar
  3. 3.
    Barak, B.: How to go beyond the black-box simulation barrier. In: FOCS, pp. 106–115 (2001)Google Scholar
  4. 4.
    Barak, B., Goldreich, O.: Universal arguments and their applications. SIAM J. Comput. 38(5), 1661–1694 (2008)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bitansky, N., Canetti, R., Halevi, S.: Leakage-tolerant interactive protocols. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 266–284. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Bitansky, N., Dachman-Soled, D., Lin, H.: Leakage-tolerant computation with input-independent preprocessing. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 146–163. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  7. 7.
    Boyle, E., Garg, S., Jain, A., Kalai, Y.T., Sahai, A.: Secure computation against adaptive auxiliary information. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 316–334. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Boyle, E., Goldwasser, S., Jain, A., Kalai, Y.T.: Multiparty computation secure against continual memory leakage. In: STOC, pp. 1235–1254 (2012)Google Scholar
  9. 9.
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: STOC, pp. 494–503 (2002)Google Scholar
  10. 10.
    Damgård, I., Pedersen, T.P., Pfitzmann, B.: Statistical secrecy and multibit commitments. IEEE Trans. Inf. Theor. 44(3), 1143–1151 (1998)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Feige, U., Shamir, A.: Zero knowledge proofs of knowledge in two rounds. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 526–544. Springer, Heidelberg (1990)Google Scholar
  12. 12.
    Garg, S., Jain, A., Sahai, A.: Leakage-resilient zero knowledge. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 297–315. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof systems for NP. J. Cryptol. 9(3), 167–190 (1996)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Haitner, I., Nguyen, M., Ong, S.J., Reingold, O., Vadhan, S.P.: Statistically hiding commitments and statistical zero-knowledge arguments from any one-way function. SIAM J. Comput. 39(3), 1153–1218 (2009)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Kiyoshima, S.: Constant-round leakage-resilient zero-knowledge from collision resistance. Cryptology ePrint Archive, Report 2015/1235 (2015). http://eprint.iacr.org/
  18. 18.
    Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
  19. 19.
    Lindell, Y., Zarosim, H.: Adaptive zero-knowledge proofs and adaptively secure oblivious transfer. J. Cryptol. 24(4), 761–799 (2011)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–158 (1991)CrossRefMATHGoogle Scholar
  21. 21.
    Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications. In: STOC, pp. 33–43 (1989)Google Scholar
  22. 22.
    Ostrovsky, R., Persiano, G., Visconti, I.: Impossibility of black-box simulation against leakage attacks. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 130–149. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  23. 23.
    Pandey, O.: Achieving constant round leakage-resilient zero-knowledge. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 146–166. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  24. 24.
    Pass, R., Rosen, A.: Concurrent non-malleable commitments. In: FOCS, pp. 563–572 (2005)Google Scholar
  25. 25.
    Pass, R., Rosen, A.: New and improved constructions of non-malleable cryptographic protocols. In: STOC, pp. 533–542 (2005)Google Scholar
  26. 26.
    Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  27. 27.
    Quisquater, J., Samyde, D.: ElectroMagnetic Analysis (EMA): measures and counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  28. 28.
    Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FOCS, pp. 162–167 (1986)Google Scholar

Copyright information

© International Association for Cryptologic Research 2016

Authors and Affiliations

  1. 1.NTT Secure Platform LaboratoriesTokyoJapan

Personalised recommendations